Basics of Finite Fields

1. Find the multiplicative inverse of 7 in F11\mathbb{F}_{11}?

Explanation

Explanation

Explanation

Explanation

2. Let a(x)=3x5+4x3+2x2+1a(x) = 3x^5+4x^3+2x^2+1 and b(x)=x3+3xb(x) = x^3+3x are belong to F5[x]\mathbb{F}_{5}[x]. Using Division algorithm if it is expressed as a(x)=q(x)b(x)+r(x) a(x) = q(x) b(x) + r(x) then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. Let f(x)=x4+x2+1f(x) = x^4+x^2+1 belong to F2[x]\mathbb{F}_{2}[x]. The polynomial f(x)f(x) is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Consider the field F23=F2[x]/(x3+x+1)\mathbb{F}_{2^3} = \mathbb{F}_2[x]/(x^3+x+1). Let α\alpha is the root of (x3+x+1)(x^3+x+1), i.e., α3+α+1=0\alpha^{3}+\alpha+1=0. Then the polynomial representation of α5\alpha^5 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. Let f(x)=x5+x3+x+1f(x) = x^5+x^3+x+1 and g(x)=x2+xg(x) = x^2+x are belong to F2[x]\mathbb{F}_{2}[x]. The gcd(f(x),g(x))gcd(f(x),g(x)) is equal to
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. For the above problem find the s(x)s(x) and t(x)t(x) such that gcd(f(x),g(x))=s(x)f(x)+t(x)g(x)gcd(f(x),g(x)) = s(x)f(x)+t(x)g(x) ?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

7. Consider the field F22=F2[x]/(x2+x+1)={0,1,α,α2=α+1}\mathbb{F}_{2^2} = \mathbb{F}_2[x]/(x^2+x+1) = \{ 0, 1, \alpha, \alpha^{2} = \alpha+1 \}. The minimal polynomial of an element α\alpha is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation