Basics of Finite Fields

1. Which of the following can't be a field?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Consider the field F9\mathbb{F}_{9}. If gcd(6,4)=6.x+4.ygcd(6,4) = 6.x+4.y then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. Consider the field F24=F2[x]/(x4+x3+1)\mathbb{F}_{2^4} = \mathbb{F}_2[x]/(x^4+x^3+1). Let α\alpha is the root of (x4+x3+1)(x^4+x^3+1), i.e., α4+α3+1=0\alpha^4+\alpha^{3}+1=0. Then the polynomial representation of α7\alpha^7 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Consider the field F24=F2[x]/(x3+x+1)\mathbb{F}_{2^4} = \mathbb{F}_2[x]/(x^3+x+1). Let α\alpha is the root of (x4+x3+1)(x^4+x^3+1), i.e., α3+α+1=0\alpha^{3}+\alpha+1=0. The multiplicative inverse of α7\alpha^7 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. Let f(x)=2x5+x4+2x3+x2+xf(x) = 2x^5+x^4+2x^3+x^2+x and g(x)=x2+2x+1g(x) = x^2+2x+1 are belong to F3[x]\mathbb{F}_{3}[x]. Then gcd(f(x),g(x))gcd(f(x),g(x)) is equal to
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. For the above problem find the s(x)s(x) and t(x)t(x) such that gcd(f(x),g(x))=s(x)f(x)+t(x)g(x)gcd(f(x),g(x)) = s(x)f(x)+t(x)g(x) ?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

7. Consider the field F24=F2[x]/(x4+x3+1)\mathbb{F}_{2^4} = \mathbb{F}_2[x]/(x^4+x^3+1). The minimal polynomial of an element α5\alpha^5 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation