Z-Transform

z\text{z}-transform

The zz- transform for a discrete-time signal x[n]\text{x}[n] is given as:

X(z)=n=x[n] zn \text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n}

where X(z)\text{X}(\text{z}) is a complex valued function of complex variable z\text{z}.

z\text{z} transform always has two parts:

(i) Mathematical expression X(z)\text{X}(\text{z})

(ii) Region of convergence (ROC) - region in z\text{z}- plane where the sum of X(z)\text{X}(\text{z}) converges.

Examples:

(i) Let x[n]\text{x}[n] be $ \delta[n] = \left{\begin{matrix} 1 \quad ~~~~~~n=0 \ 0 \quad \text{otherwise} \end{matrix}\right. $

We know that z\text{z}- tranform can be given as:

X(z)=n=x[n] zn\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n}

         =n=δ[n] zn~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n]~ \text{z}^{-n}

         =1 ~~~~~~~~~= 1

ROC of δ[n]\delta[n] : whole zz-plane

(ii) x[n]=δ[nn0]\text{x}[n] = \delta[n-n_0], where n0>0n_0 > 0 and an integer

We know that z\text{z}- tranform can be given as:

X(z)=n=x[n] zn\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n}

         =n=δ[nn0] zn~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n-n_0]~ \text{z}^{-n}

         =zn0~~~~~~~~~ = \text{z}^{-n_0}

         =(1z)n0~~~~~~~~~ = {\left ( \frac{1}{\text{z}} \right )}^{n_0}

ROC: whole z\text{z}-plane except z=0\text{z} = 0

(iii) x[n]=δ[n+n0]\text{x}[n] = \delta[n+n_0], where n0>0n_0 > 0 and an integer

We know that z\text{z}- tranform can be given as:

X(z)=n=x[n] zn\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n}

         =n=δ[n+n0] zn~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n+n_0]~ \text{z}^{-n}

         =zn0~~~~~~~~~ = \text{z}^{n_0} using shifting property of impulse signals

ROC: whole z\text{z}-plane except z=|\text{z}|=\infty

Poles and zeros

We are interested in z\text{z}-transform in the form of ratio of polynomials in z\text{z}

X(z)=N(z)D(z)\text{X}(\text{z}) = \frac{N(\text{z})}{D(\text{z})}

Numerator N(z)=0\text{N}(\text{z}) = 0 provides zeros of X(z)\text{X}(\text{z})

X(z)=0 \text{X}(\text{z}) = 0

Denominator D(z)=0\text{D}(\text{z}) = 0 provides poles of X(z)\text{X}(\text{z})

X(z)= \text{X}(\text{z}) = \infty

Note

  1. Poles play an important role in deciding the ROC, zeros do not. The ROC can not contain any poles.

  2. Different time domain signals can have same z\text{z}-transform expression X(z)\text{X}(\text{z}) but with different ROC.

Example:

1.  x[n]=anu[n]1.~~\text{x}[n] = a^n u[n]

     X[z]=n=x[n] zn~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} x[n]~ \text{z}^{-n}

     X[z]=n=anu[n] zn~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} a^n u[n] ~ \text{z}^{-n}

     X(z) = zza ;~~~~~\text{X}(\text{z})~ = ~\frac{\text{z}}{\text{z}-a} ~;

     x[n]~~~~~\text{x}[n] is a causal signal i.e. x[n]=0\text{x}[n] = 0 for n<0n<0

     ROC: z>a~~~~~\text{ROC:} ~|\text{z}| > |a|

drawing

2.  x[n]=anu[n1]2.~~\text{x}[n] = -a^n u[-n-1]

     X[z]=n=x[n] zn~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} x[n]~ \text{z}^{-n}

     X[z]=n=anu[n1] zn~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} -a^n u[-n-1] ~ \text{z}^{-n}

     X(z) = zza ;~~~~~\text{X}(\text{z})~ = ~\frac{\text{z}}{\text{z}-a} ~;

     x[n]~~~~~\text{x}[n] is a anti-causal signal i.e. x[n]=0\text{x}[n] = 0 for n>0n>0

     ROC: z<a~~~~~\text{ROC:} ~|\text{z}| < |a|

drawing

drawing