The z- transform for a discrete-time signal x[n] is given as: 
          X(z)=n=−∞∑∞x[n] z−n 
          where X(z) is a complex valued function of complex variable z. 
          z transform always has two parts: 
          (i) Mathematical expression X(z) 
          (ii) Region of convergence (ROC) - region in z- plane where the sum of  X(z)  converges.  
          Examples:
          (i) Let x[n] be δ[n]={1      n=00otherwise
          We know that z- tranform can be given as:
          X(z)=∑n=−∞∞x[n] z−n 
                   =∑n=−∞∞δ[n] z−n
                   =1
          ROC of δ[n] : whole z-plane 
          (ii) x[n]=δ[n−n0], where n0>0 and an integer
          We know that z- tranform can be given as:
          X(z)=∑n=−∞∞x[n] z−n
                   =∑n=−∞∞δ[n−n0] z−n
                   =z−n0 
                   =(z1)n0 
          ROC: whole z-plane except z=0 
          (iii) x[n]=δ[n+n0], where n0>0 and an integer  
          We know that z- tranform can be given as:
          X(z)=∑n=−∞∞x[n] z−n
                   =∑n=−∞∞δ[n+n0] z−n 
                   =zn0 using shifting property of impulse signals
          ROC: whole z-plane except ∣z∣=∞ 
          Poles and zeros
          We are interested in z-transform in the form of ratio of polynomials in z   
          X(z)=D(z)N(z) 
          Numerator N(z)=0 provides zeros of X(z)  
          X(z)=0
          Denominator  D(z)=0 provides poles of X(z)
          X(z)=∞
          Note
          
          - Poles play an important role in deciding the ROC, zeros do not. The ROC can not contain any poles. 
- Different time domain signals can have same z-transform expression X(z)
          but with different ROC.   
Example:
          1.  x[n]=anu[n] 
               X[z]=∑n=−∞∞x[n] z−n
               X[z]=∑n=−∞∞anu[n] z−n 
               X(z) = z−az ;
               x[n] is a causal signal i.e. x[n]=0 for n<0 
               ROC: ∣z∣>∣a∣
           
          
          
2.  x[n]=−anu[−n−1] 
               X[z]=∑n=−∞∞x[n] z−n
               X[z]=∑n=−∞∞−anu[−n−1] z−n 
               X(z) = z−az ;
               x[n] is a anti-causal signal i.e. x[n]=0 for n>0 
               ROC: ∣z∣<∣a∣
           
          
          
