Z-Transform
$\text{z}$-transform
The $z$- transform for a discrete-time signal $\text{x}[n]$ is given as:
$$ \text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n} $$
where $\text{X}(\text{z})$ is a complex valued function of complex variable $\text{z}$.
$\text{z}$ transform always has two parts:
(i) Mathematical expression $\text{X}(\text{z})$
(ii) Region of convergence (ROC) - region in $\text{z}$- plane where the sum of $\text{X}(\text{z})$ converges.
Examples:
(i) Let $\text{x}[n] $ be $ \delta[n] = \left{\begin{matrix} 1 \quad ~~~~~~n=0 \ 0 \quad \text{otherwise} \end{matrix}\right. $
We know that $\text{z}$- tranform can be given as:
$\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n} $
$~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n]~ \text{z}^{-n} $
$ ~~~~~~~~~= 1 $
ROC of $\delta[n]$ : whole $z$-plane
(ii) $\text{x}[n] = \delta[n-n_0]$, where $n_0 > 0$ and an integer
We know that $\text{z}$- tranform can be given as:
$\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n} $
$~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n-n_0]~ \text{z}^{-n} $
$~~~~~~~~~ = \text{z}^{-n_0}$
$~~~~~~~~~ = {\left ( \frac{1}{\text{z}} \right )}^{n_0}$
ROC: whole $\text{z}$-plane except $\text{z} = 0$
(iii) $\text{x}[n] = \delta[n+n_0]$, where $n_0 > 0$ and an integer
We know that $\text{z}$- tranform can be given as:
$\text{X}(\text{z}) = \sum_{n=-\infty}^ {\infty} \text{x}[n]~ \text{z}^{-n} $
$~~~~~~~~~ = \sum_{n=-\infty}^ {\infty} \delta[n+n_0]~ \text{z}^{-n} $
$~~~~~~~~~ = \text{z}^{n_0}$ using shifting property of impulse signals
ROC: whole $\text{z}$-plane except $|\text{z}|=\infty$
Poles and zeros
We are interested in $\text{z}$-transform in the form of ratio of polynomials in $\text{z}$
$$\text{X}(\text{z}) = \frac{N(\text{z})}{D(\text{z})} $$
Numerator $\text{N}(\text{z}) = 0$ provides zeros of $\text{X}(\text{z})$
$$ \text{X}(\text{z}) = 0 $$
Denominator $\text{D}(\text{z}) = 0$ provides poles of $\text{X}(\text{z})$
$$ \text{X}(\text{z}) = \infty $$
Note
Poles play an important role in deciding the ROC, zeros do not. The ROC can not contain any poles.
Different time domain signals can have same $\text{z}$-transform expression $\text{X}(\text{z})$ but with different ROC.
Example:
$1.~~\text{x}[n] = a^n u[n]$
$~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} x[n]~ \text{z}^{-n} $
$~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} a^n u[n] ~ \text{z}^{-n} $
$~~~~~\text{X}(\text{z})~ = ~\frac{\text{z}}{\text{z}-a} ~;$
$~~~~~\text{x}[n]$ is a causal signal i.e. $\text{x}[n] = 0$ for $n<0$
$~~~~~\text{ROC:} ~|\text{z}| > |a| $
$2.~~\text{x}[n] = -a^n u[-n-1]$
$~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} x[n]~ \text{z}^{-n} $
$~~~~~\text{X}[\text{z}] = \sum_{n=-\infty}^ {\infty} -a^n u[-n-1] ~ \text{z}^{-n} $
$~~~~~\text{X}(\text{z})~ = ~\frac{\text{z}}{\text{z}-a} ~;$
$~~~~~\text{x}[n]$ is a anti-causal signal i.e. $\text{x}[n] = 0$ for $n>0$
$~~~~~\text{ROC:} ~|\text{z}| < |a| $