Reed-Solomon Codes

1. Which of the following code can't be an MDS code?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. The code (5,2)(5,2) over the field F7\mathbb{F}_{7} generated by the generator matrix G=[2014356210]G = \begin{bmatrix} 2 & 0 & 1 & 4 & 3 \\ 5 & 6 & 2 & 1 & 0 \end{bmatrix} is MDS.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. The elements of F22\mathbb{F}_{2^2} are given in Table 2. Suppose for the (3,2)(3,2) code the message bit stream is 10111011, i.e., u0=10u_{0}= 10 and u1=11u_{1}= 11. Then the corresponding message symbols in the field F22\mathbb{F}_{2^2} \\
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. The generator matrix of the (3,2,2)(3,2,2) RS code over F22\mathbb{F}_{2^{2}} is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. For the (3,2,2)(3,2,2) RS code over F22\mathbb{F}_{2^{2}} the encoded bit stream of 10111011 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. Which of the following is evaluation set of (6,3,4)(6,3,4) RS code over the filed F23={0,1,α,α2,α3=1+α,α4=α+α2,α5=1+α+α2,α6=1+α2} \mathbb{F}_{2^{3}} = \{ 0, 1, \alpha, \alpha^{2}, \alpha^{3} = 1+\alpha, \alpha^{4} = \alpha+\alpha^{2}, \alpha^{5}=1+\alpha+\alpha^{2}, \alpha^{6}= 1+\alpha^{2} \}?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation