Reed-Solomon Codes

1. Which of the following code can be the dual code of (7,3,5)(7,3,5)?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Which of the following field can construct (63,57,7)(63,57,7) RS code?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

The code generated by the matrix G=[110000101000100100100010100001]G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. The code generated by the matrix G=[111111123456142241116166124421] G = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 2 & 2 & 4 & 1 \\ 1 & 1 & 6 & 1 & 6 & 6 \\ 1 & 2 & 4 & 4 & 2 & 1 \end{bmatrix} over the field F7\mathbb{F}_{7} is Reed-Solomon code
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. Message polynomial of the bit stream 010110111100010110111100 over the Galois field F23[X]\mathbb{F}_{2^{3}}[X] is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. Consider (7,4,4)(7,4,4) RS code over Galois field F23={0,1,α,α2,α3=1+α,α4=α+α2,α5=1+α+α2,α6=1+α2}\mathbb{F}_{2^{3}} = \{ 0, 1, \alpha, \alpha^{2}, \alpha^{3} = 1+\alpha, \alpha^{4} = \alpha+\alpha^{2}, \alpha^{5}=1+\alpha+\alpha^{2}, \alpha^{6}= 1+\alpha^{2} \} with evaluation set {α1=1,α2=α,α3=α2,α4=α3,α5=α4,α6=α5,α7=α6} \{\alpha_{1} = 1, \alpha_{2} = \alpha, \alpha_{3} = \alpha^{2}, \alpha_{4} = \alpha^{3}, \alpha_{5} = \alpha^{4},\alpha_{6} = \alpha^{5}, \alpha_{7} = \alpha^{6} \}. Then the encoded message bit stream of 010110111100010110111100 (same as the above question) is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation