Linear Block Codes

1. Consider three vectors v1=[11001]\mathbf{v}_1 = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 \end{bmatrix}, v2=[01101],v3=[00101]\mathbf{v}_2 = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \end{bmatrix} defined over F2\mathbb{F}_2. What will be v1+v2+v3?\mathbf{v}_1+\mathbf{v}_2+\mathbf{v}_3?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Consider a vector v=[1100]\mathbf{v} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} and a matrix M=[00101110011001000110]M = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ \end{bmatrix} defined over F2\mathbb{F}_2. What will be vM\mathbf{v} \cdot M?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. The vectors v1=[1101],v2=[1001]\mathbf{v}_1 = \begin{bmatrix}1 & 1 & 0 & 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix}1 & 0 & 0 & 1 \end{bmatrix} and v3=[1010]\mathbf{v}_3 = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} defined over F2\mathbb{F}_2 are linearly dependent. True or false?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. The set of integers form a field. True of false?
Explanation

Explanation

Explanation

Explanation

5. What is the dimension of the vector space given below? U={[00000],[01101],[10100],[11001]}.\begin{align*} U = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\0\\ 1\end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 1\end{bmatrix} \right\}. \end{align*}

Explanation

Explanation

Explanation

Explanation

6. What is the codeword of (7,6)\mathbf{(7,6)} SPC code for the message [011011]\mathbf{\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1\end{bmatrix}}?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation