Linear Block Codes

1. The set of vectors {[01110],[11110],[01111]}\left\{ \begin{bmatrix}0 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix}1 \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix}0 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\} defined over F2\mathbb{F}_2 are linearly independent. True or false?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Consider the vectors v1=[0110],v2=[1011],v3=[1101]\mathbf{v}_1 = \begin{bmatrix}0 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 =\begin{bmatrix}1 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 =\begin{bmatrix}1 \\ 1 \\ 0 \\ 1 \end{bmatrix} defined over F2\mathbb{F}_2. The number of vectors in span {v1,v2,v3}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} is equal to?

Explanation

Explanation

Explanation

Explanation

3. Consider the set F7=\mathbb{F}_7 = {0,1,2,3,4,5,6}\{ 0, 1, 2, 3, 4, 5, 6 \}. For any a,bF7\mathbf{a, b} \in \mathbb{F}_7 the addition and multiplication operations are defined as below. Does F7\mathbb{F}_7 form a field or not? +0123456112345602234560133456012445601235560123466012345\begin{array}{c|ccccccc} + & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & 1 & 2 & 3 & 4 & 5 & 6 & 0 \\ 2 & 2 & 3 & 4 & 5 & 6 & 0 & 1 \\ 3 & 3 & 4 & 5 & 6 & 0 & 1 & 2 \\ 4 & 4 & 5 & 6 & 0 & 1 & 2 & 3 \\ 5 & 5 & 6 & 0 & 1 & 2 & 3 & 4 \\ 6 & 6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline \end{array} 012345600000000101234562024613530362514404152635053164260654321\begin{array}{c|ccccccc} \cdot & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 0 & 2 & 4 & 6 & 1 & 3 & 5 \\ 3 & 0 & 3 & 6 & 2 & 5 & 1 & 4 \\ 4 & 0 & 4 & 1 & 5 & 2 & 6 & 3 \\ 5 & 0 & 5 & 3 & 1 & 6 & 4 & 2 \\ 6 & 0 & 6 & 5 & 4 & 3 & 2 & 1 \\ \hline \end{array}
Explanation

Explanation

Explanation

Explanation

4. Consider the vectors v1=[10010],v2=[10011],v3=[01100]v4=[00001]\mathbf{v}_1 = \begin{bmatrix}1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 =\begin{bmatrix}1 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix}0 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \mathbf{v}_4 = \begin{bmatrix}0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} defined over F2\mathbb{F}_2. Can you find scalars a1,a2,a3,a4\mathbf{a_1, a_2, a_3,a_4} \in F2\mathbb{F}_2 such that a1v1+a2v2+a3v3+a4v4=0\mathbf{a_1v_1}+\mathbf{a_2v_2}+\mathbf{a_3v_3}+\mathbf{a_4v_4} = \mathbf{0}? Comment whether the set of vectors v1,v2,v3,\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, and v4\mathbf{v}_4 are linearly independent or not.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. The set of vectors {10101,10010,01110,11111,11000}\mathbf{\{1 0 1 0 1, 1 0 0 1 0, 0 1 1 1 0, 1 1 1 1 1, 1 1 0 0 0 \}} correspond to linear or non-linear block code?
Explanation

Explanation

Explanation

Explanation

6. The encoded the message sequence 0 1 0 using REP-7 code is given by
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

7. The encoded the message sequence 1 0 0 0 1 0 1 1 0 1 1 1 using SPC(4,3\mathbf{4,3}) code is given by
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation