Generator Matrix

1. Consider the linear block code generated by the following generator matrix G\mathbf{G}. What is the dimension of this code? G=[100110001100100110101011100010111000]\begin{align*} G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Consider the linear block code C(6,4)\mathcal{C}(6,4) generated by the following generator matrix G\mathbf{G}. Is v=[111101]\mathbf{v = \begin{bmatrix} 1 & 1 & 1& 1 & 0 & 1\end{bmatrix}} a codeword in this code? G=[100110011000000110100011]\begin{align*}G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

3. Consider the linear block code generated by the following generator matrix GG. The generator matrix of its dual code will be H=[11111]\begin{align*} H = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Consider the linear block code C(6,3)\mathcal{C}(6,3) generated by the following generator matrix G\mathbf{G}. Is this code systematic? G=[100110011000100011]\begin{align*} G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 0\\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

5. Consider the linear block code generated by the following generator matrix GG. What will be the codeword corresponding to the message [110]?\begin{bmatrix} 1 & 1 & 0\end{bmatrix}? G=[101010101001111001110] \begin{align*} G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 & 1 & 1 & 1\\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. Consider the matrices G1,G2,H1\mathbf{G_1, G_2, H_1} and H2\mathbf{H_2} given below. Identify generator matrix-parity check matrix pairs. G1=[100110011000000110100011],G2=[101011]H1=[111],H2=[100110011100]. \begin{align*} G_1 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix},\hspace{1cm} G_2 = \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & 1 \end{bmatrix} \\ H_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}, \hspace{1cm} H_2 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}. \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation