Generator Matrix

1. Consider the linear block code C(7,2)\mathcal{C}(7,2) generated by the following generator matrix G\mathbf{G}. Is this code systematic? G=[10011010100111] \begin{align*} G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

2. Consider the linear block code defined by the following parity check matrix H\mathbf{H}. Is v=[111111]\mathbf{v} = \begin{bmatrix} 1 & 1 & 1& 1 & 1 & 1\end{bmatrix} a codeword in this code? H=[100110011000000110100011] \begin{align*} H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

3. Consider the linear block code with the following parity check matrix H\mathbf{H}. What is the dimension of this code? H=[100110001100100110101011100010111000] \begin{align*} H = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0\\ 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0\\ 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Find the minimum distance of the code with the following parity check matrix. H=[101010101001111001110] \begin{align*} H = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1\\ 0 & 1 & 0 & 0 & 1 & 1 & 1\\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix} \end{align*}

Explanation

Explanation

Explanation

Explanation

5. Consider the linear block code generated by the following generator matrix G\mathbf{G}. What will be the codeword corresponding to the message [0101]\begin{bmatrix} 0 & 1 & 0 & 1\end{bmatrix}? G=[10010101000010100100111010011100] \begin{align*} G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1\\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0\\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0\\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider the following block codes. Identify the linear block codes.C1={[0000],[1001],[0111],[1110]}C2={[0000]}C3={[000],[100],[001],[100],[011],[110],[101],[111]} \begin{align*} \mathcal{C}_1 &= \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\} \\ \mathcal{C}_2 &= \left\{\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}\right\} \\ \mathcal{C}_3 &= \left\{\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix},\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix},\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix},\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}\right\} \end{align*}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation