Eigen values, eigen vectors and diagonalization

Find the determinant of the matrix A2IA - 2I, where A=[120011201]A= \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} and II is the identity matrix of order 3×33 \times 3.

Explanation

Explanation

Explanation

Explanation

Explanation

Let x2x2=0x^2 - x - 2 = 0. Then x equals
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[2011]A = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} and AaI=0|A - aI| = 0. Then a equals
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Find (x,y)R2(x, y) \in \mathbb{R}^2 such that 2x+0y=02x + 0y = 0.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[1012]A = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}. Then which of the following is a solution of AX=2XAX = 2X.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let T:R2oR2T: \mathbb{R}^2 o \mathbb{R}^2 be a linear transformation defined as T(x,y)=(x,0)T(x, y) = (x, 0), where x,yRx, y \in \mathbb{R}. Then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation