Eigen values, eigen vectors and diagonalization

Consider the vector space M2imes2M_{2 imes2} over R\mathbb{R}. Let Error in LaTeX 'A=egin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} 2…. Then the characteristic polynomial and eigenvalues of AA are
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider the vector space M3imes3M_{3 imes3} over R\mathbb{R}. Let Error in LaTeX 'A=egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} 1…. Then the eigenvalues of AA are
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let AA be a 2imes22 imes2 real matrix. Then AA has
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider the vector space M2imes2M_{2 imes2} over R\mathbb{R}. Let AA be matrix of order 2imes22 imes2 which have eigenvalues α\alpha and μ\mu, such that α<μ\alpha<\mu. Then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider the vector space M2imes2M_{2 imes2} over R\mathbb{R}. Let Error in LaTeX 'A=egin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} -…. Then find the eigenvectors of AA w.r.t. the eigenvalue 00.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider the vector space M2imes2M_{2 imes2} over R\mathbb{R}. Let Error in LaTeX 'A=egin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} -…. Then the eigen space of AA w.r.t. the eigenvalue 1-1.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let 11 and 22 be eigenvalues of a matrix AA. Let xx be an eigenvector corresponding to the eigenvalue 11 and yy be an eigenvector corresponding to the eigenvalue 22. Then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation