Eigen values, eigen vectors and diagonalization
Consider the vector space over . Let Error in LaTeX 'A=egin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} 2…. Then the characteristic polynomial and eigenvalues of are
Consider the vector space over . Let Error in LaTeX 'A=egin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} 1…. Then the eigenvalues of are
Let be a real matrix. Then has
Consider the vector space over . Let be matrix of order which have eigenvalues and , such that . Then
Consider the vector space over . Let Error in LaTeX 'A=egin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} -…. Then find the eigenvectors of w.r.t. the eigenvalue .
Consider the vector space over . Let Error in LaTeX 'A=egin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}': KaTeX parse error: Unexpected character: '' at position 3: A=̲egin{bmatrix} -…. Then the eigen space of w.r.t. the eigenvalue .
Let and be eigenvalues of a matrix . Let be an eigenvector corresponding to the eigenvalue and be an eigenvector corresponding to the eigenvalue . Then