Cyclic codes

1. Choose the correct option for a cyclic code of length nn, dimension kk, and generator polynomial g(X)\mathbf{g}(X)
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Consider two polynomial f(X)=1+X+X7\mathbf{f}(X) = 1+X+X^7 and g(X)=X2+X3+X5\mathbf{g}(X) = X^2+X^3+X^5 in F2[X]\mathbb{F}_2[X]. What will be f(X)g(X)\mathbf{f}(X)\mathbf{g}(X)?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. Consider two polynomial f(X)=1+X2+X5\mathbf{f}(X) = 1+X^2+X^5 and g(X)=X3+X+1\mathbf{g}(X) = X^3+X+1 in F2[X]\mathbb{F}_2[X]. What will be the quotient (q(X)\mathbf{q}(X)) and remainder (r(X)\mathbf{r}(X)) when f(X)\mathbf{f}(X) divided by g(X)\mathbf{g}(X)?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Consider the shift register based encoder for a cyclic code given in Figure 7. What will be the contents of the shift registers at the next time instant?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. Consider (7,4)(7,4) cyclic code generated by g(X)=1+X+X3\mathbf{g}(X) = 1 +X +X^3. Suppose the syndrome s=[110] \mathbf{s} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} of a received vector r=[r0r1r2r3r4r5r6]\mathbf{r} = \begin{bmatrix} r_{0} & r_{1} & r_{2} & r_{3} & r_{4} & r_{5} & r_{6} \end{bmatrix}. Then, the syndrome of the vector r1(1)=[r61r0r1r2r3r4r5]\mathbf{r}_{1}^{(1)} = \begin{bmatrix} r_{6} \oplus 1 & r_{0} & r_{1} & r_{2} & r_{3} & r_{4} & r_{5} \end{bmatrix} is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

6. Consider the Meggitt decoder of (7,4)(7,4) cyclic code generated by g(X)=1+X+X3\mathbf{g}(X) = 1 +X +X^3. If the error location is X3X^{3}, then after how many shifts the error bit is corrected once the syndrome is formed in the syndrome register?

Explanation

Explanation

Explanation

Explanation