1. Add the two
5 5 5 -length binary tuples
( 1 , 0 , 1 , 0 , 1 , 1 ) \left(1,0,1,0,1,1\right) ( 1 , 0 , 1 , 0 , 1 , 1 ) and
( 1 , 0 , 0 , 1 , 1 , 0 ) \left(1,0,0,1,1,0\right) ( 1 , 0 , 0 , 1 , 1 , 0 ) over
F 2 \mathbb{F}_2 F 2
a: ( 2 , 0 , 1 , 1 , 2 , 1 ) \left(2,0,1,1,2,1\right) ( 2 , 0 , 1 , 1 , 2 , 1 )
Explanation
Explanation
b: ( 0 , 0 , 1 , 1 , 0 , 1 ) \left(0,0,1,1,0,1\right) ( 0 , 0 , 1 , 1 , 0 , 1 )
Explanation
Explanation
c: ( 1 , 0 , 0 , 0 , 1 , 0 ) \left(1,0,0,0,1,0\right) ( 1 , 0 , 0 , 0 , 1 , 0 )
Explanation
Explanation
d: ( 0 , 0 , 0 , 1 , 0 , 0 ) \left(0,0,0,1,0,0\right) ( 0 , 0 , 0 , 1 , 0 , 0 )
Explanation
Explanation
2. Consider two 3x3 matrices
A = [ 1 0 1 1 1 0 0 1 1 ] A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} A = 1 1 0 0 1 1 1 0 1 and
B = [ 1 1 0 0 0 1 1 0 1 ] B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} B = 1 0 1 1 0 0 0 1 1 . The result of matrix multiplication
A B AB A B over
F 2 \mathbb{F}_2 F 2 is
Explanation
Explanation
Explanation
Explanation
3. Add the four
3 3 3 -length binary tuples
( 1 , 0 , 1 ) \left(1,0,1\right) ( 1 , 0 , 1 ) ,
( 0 , 0 , 1 ) \left(0,0,1\right) ( 0 , 0 , 1 ) ,
( 1 , 0 , 0 ) \left(1,0,0\right) ( 1 , 0 , 0 ) and
( 0 , 1 , 1 ) \left(0,1,1\right) ( 0 , 1 , 1 ) over
F 2 \mathbb{F}_2 F 2
Explanation
Explanation
Explanation
Explanation
a: If we add the vector ( 1 , 0 , 0 , 0 , 0 ) \left(1,0,0,0,0\right) ( 1 , 0 , 0 , 0 , 0 ) to S S S and get a new set with 4 4 4 vectors named S ′ S' S ′ , then the set S ′ S' S ′ is a linear independent set of vectors.
Explanation
Explanation
b: If we add the vector ( 0 , 1 , 1 , 1 , 0 ) \left(0,1,1,1,0\right) ( 0 , 1 , 1 , 1 , 0 ) to S S S and get a new set with 4 4 4 vectors named S ′ S' S ′ , then the set S ′ S' S ′ is a linear independent set of vectors.
Explanation
Explanation
c: If we add the vector ( 0 , 0 , 1 , 0 , 0 ) \left(0,0,1,0,0\right) ( 0 , 0 , 1 , 0 , 0 ) to S S S and get a new set with 4 4 4 vectors named S ′ S' S ′ , then the set S ′ S' S ′ is a linear dependent set of vectors.
Explanation
Explanation
d: If we add the vector ( 1 , 0 , 1 , 0 , 1 ) \left(1,0,1,0,1\right) ( 1 , 0 , 1 , 0 , 1 ) to S S S and get a new set with 4 4 4 vectors named S ′ S' S ′ , then the set S ′ S' S ′ is a linear dependent set of vectors.
Explanation
Explanation
Explanation
Explanation
Explanation
Explanation