Review of Block Codes

Add the two 55-length binary tuples (1,0,1,0,1,1)\left(1,0,1,0,1,1\right) and (1,0,0,1,1,0)\left(1,0,0,1,1,0\right) over F2\mathbb{F}_2
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider two 3x3 matrices A=[101110011]A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} and B=[110001101]B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}. The result of matrix multiplication ABAB over F2\mathbb{F}_2 is
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Add the four 33-length binary tuples (1,0,1)\left(1,0,1\right), (0,0,1)\left(0,0,1\right), (1,0,0)\left(1,0,0\right) and (0,1,1)\left(0,1,1\right) over F2\mathbb{F}_2
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

The list of vectors in F25\mathbb{F}_{2}^{5} given in the set S={(1,0,1,0,1),(0,1,0,1,1),(1,1,0,1,1)}S=\{\left(1,0,1,0,1\right), \left(0,1,0,1,1\right), \left(1,1,0,1,1\right)\} are linearly independent. Consider the statements below, and select the one which is true.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Find the rank of matrix R=[10000101100010010101]R = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}

Explanation

Explanation

Explanation

Explanation