Explanation
Explanation
Explanation
Explanation
Explanation
For the message
m = ( 1 , 0 , 0 , 1 ) \textbf{m} = \left(1,0,0,1\right) m = ( 1 , 0 , 0 , 1 ) find correct codeword if generator matrix is
G = [ 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 0 0 0 ] G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} G = 1 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0 .
a: ( 0 , 0 , 1 , 0 , 1 , 1 ) \left(0,0,1,0,1,1\right) ( 0 , 0 , 1 , 0 , 1 , 1 )
Explanation
Explanation
b: ( 1 , 0 , 1 , 0 , 1 , 1 ) \left(1,0,1,0,1,1\right) ( 1 , 0 , 1 , 0 , 1 , 1 )
Explanation
Explanation
c: ( 1 , 0 , 0 , 0 , 0 , 0 ) \left(1,0,0,0,0,0\right) ( 1 , 0 , 0 , 0 , 0 , 0 )
Explanation
Explanation
d: ( 0 , 0 , 0 , 0 , 0 , 0 ) \left(0,0,0,0,0,0\right) ( 0 , 0 , 0 , 0 , 0 , 0 )
Explanation
Explanation
Consider a code
C \mathcal{C} C with parity-check matrix
H = [ 1 0 1 0 0 1 1 1 ] H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} H = [ 1 0 0 1 1 1 0 1 ] . Find a invalid codeword of
C \mathcal{C} C .
Explanation
Explanation
Explanation
Explanation
Consider a noiseless-communication system with code
C \mathcal{C} C and corresponding parity-check matrix
H = [ 1 0 1 0 0 1 1 1 ] H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} H = [ 1 0 0 1 1 1 0 1 ] and receiver received codeword
( 1 , 1 , 1 , 0 ) \left(1,1,1,0\right) ( 1 , 1 , 1 , 0 ) . Find a correct (generator matrix, transmitted message) pair.
Explanation
Explanation
Explanation
Explanation
Consider a code
C \mathcal{C} C with generator matrix
G = [ 1 a 1 0 0 1 1 1 ] G = \begin{bmatrix} 1 & a & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} G = [ 1 0 a 1 1 1 0 1 ] . Suppose symbol
a a a can take either 0 or 1. Which of the following statements are true?
a: If the message is ( 1 , 0 ) \left(1,0\right) ( 1 , 0 ) , the corresponding codeword is ( 1 , 1 , 1 , 0 ) \left(1,1,1,0\right) ( 1 , 1 , 1 , 0 ) , given a = 0 a=0 a = 0 .
Explanation
Explanation
b: If the message is ( 1 , 1 ) \left(1,1\right) ( 1 , 1 ) , the corresponding codeword is ( 1 , 1 , 0 , 1 ) \left(1,1,0,1\right) ( 1 , 1 , 0 , 1 ) , given a = 1 a=1 a = 1 .
Explanation
Explanation
c: If the message is ( 1 , 0 ) \left(1,0\right) ( 1 , 0 ) , the corresponding codeword is ( 1 , 0 , 1 , 0 ) \left(1,0,1,0\right) ( 1 , 0 , 1 , 0 ) , given a = 0 a=0 a = 0 .
Explanation
Explanation
d: If the message is ( 0 , 0 ) \left(0,0\right) ( 0 , 0 ) , the corresponding codeword is ( 1 , 0 , 1 , 0 ) \left(1,0,1,0\right) ( 1 , 0 , 1 , 0 ) , given a = 1 a=1 a = 1 .
Explanation
Explanation