Review of Block Codes

Consider a code C\mathcal{C} with generator matrix G=[101011110111110110]G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}, Select the matrix which is not\textbf{not} a parity check of the code.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

For the message m=(1,0,0,1)\textbf{m} = \left(1,0,0,1\right) find correct codeword if generator matrix is G=[101011110111110110100000]G = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider a code C\mathcal{C} with parity-check matrix H=[10100111]H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}. Find a invalid codeword of C\mathcal{C}.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider a noiseless-communication system with code C\mathcal{C} and corresponding parity-check matrix H=[10100111]H = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} and receiver received codeword (1,1,1,0)\left(1,1,1,0\right). Find a correct (generator matrix, transmitted message) pair.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Consider a code C\mathcal{C} with generator matrix G=[1a100111]G = \begin{bmatrix} 1 & a & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}. Suppose symbol aa can take either 0 or 1. Which of the following statements are true?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation