Torsional System as Two Degree of Freedom System

A torsional system consists of two discs mounted on a shaft, as shown in Fig. 1.

Alt text

Fig 1. Two DOF Torsional System

The shaft can be divided into three segments, having rotational spring constants as kt1k_{t1}, kt2k_{t2}, and kt3k_{t3}, as shown in Figure 1.

Mass moment of inertia of the discs are J1J_1 and J2J_2, and Mt1M_{t1} and Mt2M_{t2} are the applied torque and the rotational degree of freedoms are θ1\theta_1 and θ2\theta_2.

The differential equations of rotational motion for the discs can be written as,

J1θ¨1+(kt1+kt2)θ1kt2θ2=Mt1J₁θ̈₁ + (k_{t1} + k_{t2})θ₁ - k_{t2}θ₂ = M_{t1}
J2θ¨2kt2θ1+(kt2+kt3)θ2=Mt2J₂θ̈₂ - k_{t2}θ₁ + (k_{t2} + k_{t3})θ₂ = M_{t2}

Consider a harmonic oscillation where θi=Θisinωt\theta_i = \Theta_i \sin\omega t. The frequencies can be obtained by equating the determinant to zero,

det[J1ω2+(kt1+kt2)kt2kt2J2ω2+(kt2+kt3)]=0 \det \begin{bmatrix} -J_1\omega^2 + (k_{t_1} + k_{t_2}) & -k_{t_2} \\ -k_{t_2} & -J_2\omega^2 + (k_{t_2} + k_{t_3}) \end{bmatrix} = 0

And,

J1J2ω4{(kt1+kt2)J2+(kt2+kt3)J1}ω2+{(kt1+kt2)(kt2+kt3)kt22}=0J_1J_2\omega^4 - \left\{ (k_{t_1} + k_{t_2})J_2 + (k_{t_2} + k_{t_3})J_1 \right\} \omega^2 + \left\{ (k_{t_1} + k_{t_2})(k_{t_2} + k_{t_3}) - k_{t_2}^2 \right\} = 0

Which is the characteristic equation. The roots of the equations are,

ω22,ω12=12{(kt1+kt2)J2+(kt2+kt3)J1J1J2}±12[{(kt1+kt2)J2+(kt2+kt3)J1J1J2}24{(kt1+kt2)(kt2+kt3)kt22J1J2}]12\omega_2^2, \omega_1^2 = \frac{1}{2}\left\{ \frac{(k_{t_1} + k_{t_2})J_2 + (k_{t_2} + k_{t_3})J_1}{J_1J_2} \right\} \pm \frac{1}{2}\left[ \left\{ \frac{(k_{t_1} + k_{t_2})J_2 + (k_{t_2} + k_{t_3})J_1}{J_1J_2} \right\}^2 - 4\left\{ \frac{(k_{t_1} + k_{t_2})(k_{t_2} + k_{t_3}) - k_{t_2}^2}{J_1J_2} \right\} \right]^{\frac{1}{2}}

where ω1\omega_1 and ω2\omega_2 are the natural frequencies of the system.