Automotive Vehicle as a Two Degree of Freedom System

An automobile carries passengers or goods from one place to another. Generally, it consists of a suspension, tire, and other electrical systems which assist in either the maintenance or efficient functioning of the vehicle. The automobile can be modeled as a two-degree-of-freedom lumped parametric system to study pitch and bounce motions, as shown in Figure 1.

Fig. 1. Pitch and bounce motion of a Car

As a two-degree of freedom system, x (bounce) and θ (pitch) are the independent parameters that will give the equations of motion.

mx¨=kf(xl1θ)kr(x+l2θ)m\ddot x = -k_f(x - l_1 \theta) - k_r(x+l_2\theta)

J0θ¨=kf(xl1θ)l1kr(x+l2θ)l2J_0\ddot \theta = k_f(x - l_1 \theta)l_1 - k_r(x + l_2\theta)l_2

In the matrix form,

[m00J0]{x¨θ¨}+[(kf+kr)(kfl1krl2)(kfl1krl2)(kfl12+krl22)]{xθ}={00} \begin{bmatrix} m & 0 \\ 0 & J_{0} \end{bmatrix} \begin{Bmatrix} \ddot{x} \\ \ddot{\theta} \end{Bmatrix} + \begin{bmatrix} (k_{f} + k_{r}) & -(k_{f}l_{1} - k_{r}l_{2}) \\ -(k_{f}l_{1} - k_{r}l_{2}) & (k_{f}l_{1}^{2} + k_{r}l_{2}^{2}) \end{bmatrix} \begin{Bmatrix} x \\ \theta \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}

Assuming a harmonic solution,

x(t)=Xcos(ωt+ϕ)             θ(t)=θcos(ωt+ϕ)x(t) = X cos(\omega t + \phi) \space \space\space\space\space\space\space\space\space\space\space\space\space \theta(t) = \theta \cos(\omega t + \phi)

We get,

[(mω2+kf+kr)(kfl1+krl2)(kfl1+krl2)(J0ω2+kfl12+krl22)]{Xθ}={00} \begin{bmatrix} (-m\omega^{2}+k_{f}+k_{r}) & (-k_{f}l_{1}+k_{r}l_{2}) \\ (-k_{f}l_{1}+k_{r}l_{2}) & (-J_{0}\omega^{2}+k_{f}l_{1}^{2}+k_{r}l_{2}^{2}) \end{bmatrix} \begin{Bmatrix} X \\ \theta \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}

Upon solving and simplifying,

J0mω4[(kfl12+krl22)m+(kf+kr)I0]ω2+KfKrL2=0J_{0}m\omega^{4}-[(k_{f}l_{1}^{2}+k_{r}l_{2}^{2})m+(k_{f}+k_{r})I_{0}]\omega^{2}+K_{f}K_{r}L^{2}=0

Where L=l1+l2L = l_1 + l_2

This equation is used to solve for ω, which are the roots of the equation

ω1,22=[(kfl12 + krl22)m + (kf+kr)I0] ± [(kfl12 + krl22)m + (kf + kr)I0]2  [4I0mKfKrL2]2I0m\omega^{2}_{1,2}=\frac{[(k_{f}l_{1}^{2} \space + \space k_{r}l_{2}^{2}) m\space + \space(k_{f}+k_{r})I_{0}]\space\pm\space\sqrt{[(k_{f}l_{1}^{2}\space +\space k_{r}l_{2}^{2})m\space+\space(k_{f}\space +\space k_{r})I_{0}]^{2}\space -\space [4I_{0}mK_{f}K_{r}L^{2}}]}{2I_{0}m}