Solution of system of linear equations using linear map equation

Let A=[1221]A=\begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} and B=[124211]B=\begin{bmatrix} 1 & 2 | 4 \\ -2 & 1 | 1 \end{bmatrix}. Then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[1122]A=\begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix} and B=[120210]B=\begin{bmatrix} -1 & 2 | 0 \\ -2 & -1 | 0 \end{bmatrix}. Then the rankA and rankB are respectively
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A be a matrix of order n×m and the B be a matrix of order n×(m+1) such that the first n column of B are same as that of A. Then
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[110011]A=\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix} and B=[112]B=\begin{bmatrix} -1 \\ -1 \\ -2 \end{bmatrix}. Then A.B equals
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[110010000]A=\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[110111210]A=\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 2 & 1 & 0 \end{bmatrix}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let A=[41123]A=\begin{bmatrix} 4 & -1 \\ 12 & -3 \end{bmatrix}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation