System of Linear Equations - Sherman Morrison Method

A=[10044.704318.261747.478610.904836.411620.339835.43352.2131]A = \begin{bmatrix} 100 & 44.7043 & 18.2617 \\ -47.4786 & 10.9048 & 36.4116 \\ 20.3398 & -35.4335 & 2.2131 \end{bmatrix} Find inverse of A.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

A1=[0.00300650.00300650.00300650.0274220.0274220.0274220.00854930.00854930.0085493]u=[233]v=[123] A^{-1} = \begin{bmatrix} -0.0030065 & -0.0030065 & -0.0030065 \\ 0.027422 & 0.027422 & 0.027422 \\ 0.0085493 & 0.0085493 & 0.0085493 \end{bmatrix} u = \begin{bmatrix} 2\\ -3\\ 3 \end{bmatrix} v = \begin{bmatrix} -1\\ -2\\ -3 \end{bmatrix} Given update vetors u and v, compute the factors as follows, P=A1×u P = A^{-1} × u Q=vT×A1 Q = v^{T} × A^{-1} denominator=[1]+Q×u \text{denominator} = [1] + Q × u B=P×vT×A1 B = P × v^T × A^{-1} Find B.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation