Regression and curve fitting using procedures such as Least-Square and Weighted Least-Square curve fitting.
Procedure:
- Data Collection
- Prepare experimental data points (x, y coordinates)
- Ensure at least 2 data points are available
- Optional: Prepare corresponding weight values for weighted regression.
- Input Data
- Enter x,y data points in the "Enter X,Y Data Points" textarea
- Format: One coordinate pair per line, separated by comma
- Example: 1,2.1 2,4.0 3,6.3 4,8.1 5,9.9
- Optional: Enter weights in corresponding textarea
- Configure Regression Parameters
- Select desired regression type from dropdown: a. Linear Regression b. Polynomial (2nd degree) c. Exponential Regression
- Perform Analysis
- Click "Simulate" button
- Observe results in Results column:
- Regression equation
- R-squared value
- Graphical plot of data points and regression line
- Data Interpretation
- Analyze regression equation coefficients
- Evaluate R-squared value (goodness of fit)
- Compare different regression models
- Draw conclusions about data relationship
Caution:
- Ensure numeric data entry
- Provide sufficient data points for meaningful regression