Random Variables

In a random experiment, the outcomes may not always be numerical and we maybe interested in some consequences of its random outcome. These outcomes maybe associated with some numerical values of interest using the notation of a random variable.

Definition 1 (Random variable) :

A random variable is a function X:ΩRX : \Omega \to \mathbb{R} with the property that {ωΩ:X(ω)x}F\{ \omega \in \Omega : X(\omega) \leq x \} \in \mathcal{F} for each xRx \in \mathbb{R}. Random variables map Ω\Omega into R\mathbb{R}.

RV associated with a sample point

RV associated with a coin toss exp.

Example 1 A fair coin is tossed twice. The sample space can be written as Ω={HH,HT,TH,TT}\Omega = \{HH, HT, TH, TT\}. For ωΩ\omega \in \Omega, let X(ω)\mathbb{X}(\omega) be the number of heads in ω\omega so X(HH)=2,X(HT)=X(TH)=1,X(TT)=0\mathbb{X}(HH) = 2, \mathbb{X}(HT) = \mathbb{X}(TH) = 1, \mathbb{X}(TT) = 0 . This function X:Ω(R)X : \Omega \rightarrow \mathbb(R) is a random variable with respect to the σ\sigma algebra F={ϕ,Ω,{TT},{HH,HT,TH},{HH},{HT,TH,TT}}\mathcal{F} = \{ \phi, \Omega, \{ TT \}, \{ HH, HT, TH \}, \{ HH \}, \{ HT, TH, TT \} \} ,

Example 2 Let W\mathbb{W} be a random variable based on the experiment where a person AA is gambling BB rs amount on the result of the experiment. He gambles cumalatively so that his fortunes double everytime a head appears and is annhilated when a tail appears. Lets assume that the person AA has gambled twice. The sample space can be written as Ω={HH,HT,TH,TT}\Omega = \{HH, HT, TH, TT\}. For ωΩ\omega \in \Omega and the sigma algebra F={ϕ,Ω,{TT,TH,HT},{HH}}\mathcal{F} = \{ \phi, \Omega, \{ TT, TH, HT \}, \{ HH \}\} , so W(HH)=4B,W(HT)=W(TH)=W(TT)=0\mathbb{W}(HH) = 4B, \mathbb{W}(HT) = \mathbb{W}(TH) = \mathbb{W}(TT) = 0 .

After the experiment is done and the outcome ωΩ\omega \in \Omega is known, a random variable X:ΩR\mathbb{X} : \Omega \to \mathbb{R} takes some value.

Definition 2 (Cumulative Distribution Function) :

The distribution function of a random variable X\mathbb{X} is the function FX:R[0,1]F_X : \mathbb{R} \to [0, 1] given by FX(x)=P(Xx)F_X(x) = \mathbb{P}(\mathbb{X} \leq x)

  • For Example 1, if PX(x)=1/4P_X(x) = 1/4, for all xXx \in X

FX(x)={0x<0140x<1341x<21x2 \begin{equation} F_{\mathbb{X}}(x) = \begin{cases} 0 & \text{$x < 0$}\\ \frac{1}{4} & \text{$0 \leq x < 1$}\\ \frac{3}{4} & \text{$ 1 \leq x < 2$}\\ 1 & \text{$x \geq 2$} \end{cases} \end{equation}

alt text

  • For Example 2, if PW(ω)=1/4P_W(\omega) = 1/4, for all ωW\omega \in W

FW(ω)={0ω<0340ω<41ω4 \begin{equation} F_{\mathbb{W}}(\omega) = \begin{cases} 0 & \text{$\omega < 0$}\\ \frac{3}{4} & \text{$ 0 \leq \omega < 4$}\\ 1 & \text{$\omega \geq 4$} \end{cases} \end{equation}

alt text

The CDF FF has the following properties

  • limxF(x)=0\lim_{x \to - \infty} F(x) = 0 , limxF(x)=1\lim_{x \to \infty} F(x) = 1
  • if x<yx < y. then F(x)F(y)F(x) \leq F(y)
  • FF is a right continous, that is F(x+h)F(x)F(x + h) \to F(x) as h0h \to 0

FF is the cumulative distribution function of some random variables if and only if it satisfies the above 3 properties.

Suppose FF is a CDF of X\mathbb{X}. Then

  • P(X>x)=1F(x)\mathbb{P}(\mathbb{X} > x) = 1 - F(x)
  • P(x<Xy)=F(y)F(x)\mathbb{P}(x < \mathbb{X} \leq y) = F(y) -F(x)
  • P(X=x)=F(x)lim(h0+)F(xh)\mathbb{P}(\mathbb{X} = x) = F(x) - \lim_{(h \to 0^+)} F(x-h)