PDE: Parabolic equation - implicit method (Crank - Nicholson method)

2fx2=ft=0 \frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t} = 0 whenf(0,t)=0,f(20,t)=10,f(x,0)=2 when f(0,t) = 0, f(20,t) = 10, f(x,0) = 2 Δx=h=5 \Delta x = h = 5 Take r=1 Take\ r = 1 Find(x,25) at x=5. Find(x, 25)\ at\ x=5.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2fx2=ft=0 \frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t} = 0 whenf(0,t)=0,f(20,t)=10,f(x,0)=2 when f(0,t) = 0, f(20,t) = 10, f(x,0) = 2 Δx=h=5 \Delta x = h = 5 Take r=1 Take\ r = 1 Find(x,25) at x=10. Find(x, 25)\ at\ x=10.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation