Linear Transformation and Matrices

This experiment helps students understand what a linear transformation is and how it is related to matrices. The experiment shows that every linear transformation can be written using a matrix and vice-versa, which makes it easier to work with. By doing this, students learn how matrices can be used to represent and apply transformations in a simple and clear way.

1. Linear transformation:

Let MM and NN be vector spaces over a field RR. Then a function T:MNT:M→N is called a linear transformation if, for x,yMx, y \in M and R \in R
(i) T(x+y)=T(x)+T(y)T(x+y)=T(x)+T(y)
(ii) T(αx)=αT(x)T(αx)=αT(x)

Linear transformaion

1.1. Identity transformation:

Let MM be a vector space over a field RR. Then the function T:MMT:M→M defined as T(x)=xT(x)=x, where xMx \in M, is linear and is known as identity transformation.

Identity transformaion

1.2. Zero transformation:

Let MM and NN be vector spaces over a field RR. Then the function T:MNT:M→N defined as T(x)=0T(x)=0, where xMx \in M, is linear and is known as zero transformation.

Zero transformaion

1.3. Examples:

a). Let T:R2R2T: R^{2}→R^{2} such that T(x,y)=(x,y)T(x, y)=(x, -y), where x,yRx, y \in R. Then TT is linear.

Proof:

Let x=(x1,x2)x=(x_{1}, x_{2}) and y=(y1,y2)R2.y=(y_{1}, y_{2}) \in R^{2}. Then T(x1,x2)=(x1,x2)T(x_{1}, x_{2})=(x_{1}, -x_{2}) and T(y1,y2)=(y1,y2)T(y_{1}, y_{2})=(y_{1}, -y_{2}). Notice that
(i) T(x+y)=T[(x1,x2>)+(y1,y2)]=T(x1+y1,x2+y2)=(x1+y1,(x2+y2))T(x+y)=T[(x_{1}, x_{2}>)+(y_{1}, y_{2})]=T(x_{1}+y_{1}, x_{2}+y_{2})=(x_{1}+y_{1}, -(x_{2}+y_{2})) and T(x)+T(y)=(x1,x2)+(y1,y2)=(x1+y1,(x2+y2)).T(x)+T(y)=(x_{1}, -x_{2})+ (y_{1}, -y_{2})= (x_{1}+y_{1}, -(x_{2}+y_{2})).
(ii) T(αx)=T(αx1,αx2)=(αx1,αx2)T(αx)=T(αx_{1}, αx_{2})=(αx_{1}, -αx_{2}) and αT(x)=α(x1,x2)=(αx1,αx2).αT(x)=α(x_{1}, -x_{2})=(αx_{1}, -αx_{2}).

b). Let T:R2T:R^{2}R2R^{2} such that T(x,y)=(x,0),T(x, y)=(x, 0), where x,yR.x, y \in R. Then TT is linear.

Proof:

Let x=(x1,x2)x=(x_{1}, x_{2}) and y=(y1,y2)R2y=(y_{1}, y_{2}) \in R^{2}. Then T(x1,x2)=(x1,x2)T(x_{1}, x_{2})=(x_{1}, -x_{2}) and T(y1,y2)=(y1,y2).T(y_{1}, y_{2})=(y_{1}, -y_{2}). Notice that
(i) T(x+y)=T[(x1,x2)+(y1,y2)]=T(x1+y1,x2+y2)=(x1+y1,0)T(x+y)=T[(x_{1}, x_{2})+(y_{1}, y_{2})]=T(x_{1}+y_{1}, x_{2}+y_{2})=(x_{1}+y_{1}, 0) and T(x)+T(y)=(x1,0)+(y1,0)=(x1+y1,0).T(x)+T(y)=(x_{1}, 0)+ (y_{1}, 0)=(x_{1}+y_{1}, 0).
(ii) T(αx)=T(αx1,αx2)=(αx1,0)T(αx)=T(αx_{1}, αx_{2})=(αx_{1}, 0) and αT(x)=α(x1,0)=(αx1,0).αT(x)=α(x_{1}, 0)=(αx_{1}, 0).

c). Let T:R2T:R^{2}R2R^{2} such that T(x,y)=(x,0),T(x, y)=(x, 0), where x,yR.x, y \in R. Then TT is linear.

Proof:

Let x=(x1,x2)x=(x_{1}, x_{2}) and y=(y1,y2)R2y=(y_{1}, y_{2}) \in R^{2}. Then T(x1,x2)=(x1,x2)T(x_{1}, x_{2})=(x_{1}, -x_{2}) and T(y1,y2)=(y1,y2).T(y_{1}, y_{2})=(y_{1}, -y_{2}). Notice that
(i) T(x+y)=T[(x1,x2)+(y1,y2)]=T(x1+y1,x2+y2)=(x2+y2,x1+y1)T(x+y)=T[(x_{1}, x_{2})+(y_{1}, y_{2})]=T(x_{1}+y_{1}, x_{2}+y_{2})=( x_{2}+y_{2}, x_{1}+y_{1}) and T(x)+T(y)=(x2,x1)+(y2,y1)=(x2+y2,x1+y1).T(x)+T(y)=(-x_{2}, x_{1})+ (-y_{2}, y_{1})= ( x_{2}+y_{2}, x_{1}+y_{1}).
(ii) T(αx)=T(αx1,αx2)=(αx1,αx2)T(αx)=T(αx_{1}, αx_{2})=(αx_{1}, -αx_{2}) and αT(x)=α(x2,x1)=(αx1,αx2).αT(x)=α(x_{2}, x_{1})=(αx_{1}, -αx_{2}).

1.4. Proposition:

Let T:MNT:M→N be a linear transformation. Then
(i) T(0)=0;T(0)=0; where 0 on the L.H.S is the zero vector of MM and 0 on the R.H.S is the zero vector of N.N.
(ii) T(x)=T(x),T(-x)=-T(x), for all xMx \in M
(iii) T(xy)=T(x)T(y),T(x-y)=T(x)-T(y), for all x,yMx, y \in M
(iv) T(αx+βy)=αT(x)+βT(y),T(αx+βy)=αT(x)+βT(y), for all x,yMx, y \in M and α,βRα, β \in R

1.5. Proposition:

Let T:VWT:V→W be a linear map and VV and WW be finite dimensional vector spaces over RR and
B={e1,e2,,en} B= \{e_{1}, e_{2}, …, e_{n}\} is a basis for VV and let x=r1f1+r2e2+...+rnen,x= r_{1}f_{1}+r_{2} e_{2}+ ... +r_{n}e_{n}, where xV,r1,r2,,r2R.x \in V, r_{1}, r_{2}, …, r_{2} \in R. Then T(e1),T(e2),,T(en)T(e_{1}), T(e_{2}), …, T(e_{n}) define T,T, by T(x)=rT(e1)+sT(e2)++tT(en).T(x)= rT(e_{1})+sT(e_{2})+ … +tT(e_{n}).

2. Matrix associated with a linear transformation:

Let T:R3→R2 be a linear transformation. Let B1={f1, f2, f3} and B2={e1, e2} be basis of R3 and R2 respectively. Then T(f1)=ae1+be2, T(f2)=ce1+de2 and T(f3)=ge1+he2, for some a, b, c, d, g, h∈R.

Let A=

(ace bdf)\begin{pmatrix}a & c & e \\\ b & d & f\end{pmatrix}

Then matrix A is of order 2×3 and is called the matrix representation of T w.r.t. the basis B1 and B2.
In a similar way, one can check that a matrix representation of T:Rn→Rm is of order m×n.

2.1. Example:

Let T:R2→R2 be a linear map defined as T(x, y)=(x, -y), where x, y∈R. Then find the matrix associated with the transformation w.r.t. the basis B1={(1, 0), (0,1)}and B2={(0, -1), (-1, 0)}.
Let e1=(1, 0), e2=(0, 1), f1=(0, -1) and f2=(-1, 0). Thus
T(1, 0)=(1, 0)=0.(0, -1)+(-1).(-1, 0) T(0, 1)=(0, -1)= 1.(0, -1)+0.(-1, 0) and hence the matrix representation of T w.r.t. the basis B1 and B2 is

3. Linear transformation associated with a matrix:

Let A=

(ace bdf)\begin{pmatrix}a & c & e \\\ b & d & f\end{pmatrix}

be a matrix of order 2×3. Then the linear transformation T:R3→R2 associated with the matrix w.r.t. the basis B1=>={f1, f2, f3} and B2= B2={e1, e2} of R3 and R2respectively can be obtained as follows:
Define T(f1)=ae1+be2, T(f2)=ce1+de2 and T(f3)=ge1+he2, where a, b, c, d, g, h∈R. Then for x∈V, there exist r, s, t∈R such that x=rf1+sf2+tf3. Thus define T(x)= rT(f1)+sT(f2)+tT(f3), because T has to be linear.

3.1. Example:

Consider A= (110 011) \begin{pmatrix}1 & -1 & 0 \\\ 0 & 1 & 1\end{pmatrix}

Then find the associated linear transformation of A w.r.t. the basis B1={(1, 0, 0), (-1, 1, 0), (0, 1, 1)} and B2={(-1, 1), (0, 1)} of R3 and R2 respectively.
Define T(1, 0, 0)=1(-1, 1)+0(0, 1)=(-1, 1), T(-1, 1, 0)=-1(-1, 1)+1(0, 1)=(1, 0) and T(0, 1, 1)=0(-1, 1)+1(0, 1)=(0, 1). Since (x, y, z)=a(1, 0, 0)+b(-1, 1, 0)+c(0, 1, 1), hence a-b=x, b+c=y and c=z. By solving these equations we get, a=x+y-z, b=y-z and c=z.
Now, define T:R3→R2 by T(x, y, z)= aT(1, 0, 0)+bT(-1, 1, 0)+cT(0, 1, 1)=a(-1, 1)+b(1, 0)+c(0, 1)=(-a+b, a+c)=(-x, x+y), where x, y∈R.
The linear transformation T:R3→R2 associated with the matrix 2×3 A w.r.t. the basis B1 and B2 is T(x, y, z)=( -x, x+y), where x, y∈R.