Linear Transformation and Matrices

1. Linear transformation:

Let M and N be vector spaces over a field R. Then a function T:M→N is called a linear transformation if, for x, y∈M and α∈R
(i) T(x+y)=T(x)+T(y)
(ii) T(αx)=αT(x) Linear transformaion

1.1. Identity transformation:

Let M be a vector space over a field R. Then the function T:M→M defined as T(x)=x, where x∈M, is linear and is known as identity transformation. Identity transformaion

1.2. Zero transformation:

Let M and N be vector spaces over a field R. Then the function T:M→N defined as T(x)=0, where x∈M, is linear and is known as zero transformation. Zero transformaion

1.3. Examples:

a). Let T: R2→R2 such that T(x, y)=(x, -y), where x, y∈R. Then T is linear.

  Proof:

  Let x=(x1, x2)and y=(y1, y2)∈R2. Then T(x1, x2)=(x1, -x2) and T(y1, y2)=(y1, -y2). Notice that
  (i)T(x+y)=T[(x1, x2)+(y1, y2)]=T(x1+y1, x2+y2)=(x1+y1, -( x2+y2)) and T(x)+T(y)=(x1, -x2)+ (y1, -y2)= (x1+y1, -( x2+y2).
  (ii) T(αx)=T(αx1, αx2)=(αx1, -αx2) and αT(x)=α(x1, -x2)=(αx1, -αx2).

b). Let T:R2→R2 such that T(x, y)=(x, 0), where x, y∈R. Then T is linear.

  Proof:

  Let x=(x1, x2) and y=(y1, y2)∈R2. Then T(x1, x2)=(x1, -x2) and T(y1, y2)=(y1, -y2). Notice that
 (i) T(x+y)=T[(x1, x2)+(y1, y2)]=T(x1+y1, x2+y2)=(x1+y1, 0) and T(x)+T(y)=(x1, 0)+ (y1, 0)=(x1+y1, 0).
 (ii) T(αx)=T(αx1, αx2)=(αx1, 0) and αT(x)=α(x1, 0)=(αx1, 0).

c). Let T:R2→R2 such that T(x, y)=(x, 0), where x, y∈R. Then T is linear.

  Proof:

  Let x=(x1, x2) and y=(y1, y2)∈R2. Then T(x1, x2)=(x1, -x2) and T(y1, y2)=(y1, -y2). Notice that
 (i) T(x+y)=T[(x1, x2)+(y1, y2)]=T(x1+y1, x2+y2)=( x2+y2, x1+y1) and T(x)+T(y)=(-x2, x1)+ (-y2, y1)= ( x2+y2, x1+y1).
 (ii) T(αx)=T(αx1, αx2)=(αx1, -αx2) and αT(x)=α(x2, x1)=(αx1, -αx2).

1.4. Proposition:

Let T:M→N be a linear transformation. Then
(i) T(0)=0; where 0 on the L.H.S is the zero vector of M and 0 on the R.H.S is the zero vector of N.
(ii) T(-x)=-T(x), for all x∈M
(iii) T(x-y)=T(x)-T(y), for all x, y∈M
(iv) T(αx+βy)=αT(x)+βT(y), for all x, y∈M and α, β∈R

1.5. Proposition:

Let T:V→W be a linear map and V and W be finite dimensional vector spaces over R and
B={e1, e2, …, en} is a basis for V and let x= r1f1+r2 e2+ ... +rnen, where x∈V, r1, r2, …, rn∈R. Then T(e1), T(e2), …, T(en) define T, by T(x)= rT(e1)+sT(e2)+ … +tT(en) .

2. Matrix associated with a linear transformation:

Let T:R3→R2 be a linear transformation. Let B1={f1, f2, f3} and B2={e1, e2} be basis of R3 and R2 respectively. Then T(f1)=ae1+be2, T(f2)=ce1+de2 and T(f3)=ge1+he2, for some a, b, c, d, g, h∈R.

Let A=

(ace bdf)\begin{pmatrix}a & c & e \\\ b & d & f\end{pmatrix}

Then matrix A is of order 2×3 and is called the matrix representation of T w.r.t. the basis B1 and B2.
In a similar way, one can check that a matrix representation of T:Rn→Rm is of order m×n.

2.1. Example:

Let T:R2→R2 be a linear map defined as T(x, y)=(x, -y), where x, y∈R. Then find the matrix associated with the transformation w.r.t. the basis B1={(1, 0), (0,1)}and B2={(0, -1), (-1, 0)}.
Let e1=(1, 0), e2=(0, 1), f1=(0, -1) and f2=(-1, 0). Thus
T(1, 0)=(1, 0)=0.(0, -1)+(-1).(-1, 0) T(0, 1)=(0, -1)= 1.(0, -1)+0.(-1, 0) and hence the matrix representation of T w.r.t. the basis B1 and B2 is

3. Linear transformation associated with a matrix:

Let A=

(ace bdf)\begin{pmatrix}a & c & e \\\ b & d & f\end{pmatrix}

be a matrix of order 2×3. Then the linear transformation T:R3→R2 associated with the matrix w.r.t. the basis B1=>={f1, f2, f3} and B2= B2={e1, e2} of R3 and R2respectively can be obtained as follows:
Define T(f1)=ae1+be2, T(f2)=ce1+de2 and T(f3)=ge1+he2, where a, b, c, d, g, h∈R. Then for x∈V, there exist r, s, t∈R such that x=rf1+sf2+tf3. Thus define T(x)= rT(f1)+sT(f2)+tT(f3), because T has to be linear.

3.1. Example:

Consider A=

(110 011)\begin{pmatrix}1 & -1 & 0 \\\ 0 & 1 & 1\end{pmatrix}

Then find the associated linear transformation of A w.r.t. the basis B1={(1, 0, 0), (-1, 1, 0), (0, 1, 1)} and B2={(-1, 1), (0, 1)} of R3 and R2 respectively.
Define T(1, 0, 0)=1(-1, 1)+0(0, 1)=(-1, 1), T(-1, 1, 0)=-1(-1, 1)+1(0, 1)=(1, 0) and T(0, 1, 1)=0(-1, 1)+1(0, 1)=(0, 1). Since (x, y, z)=a(1, 0, 0)+b(-1, 1, 0)+c(0, 1, 1), hence a-b=x, b+c=y and c=z. By solving these equations we get, a=x+y-z, b=y-z and c=z.
Now, define T:R3→R2 by T(x, y, z)= aT(1, 0, 0)+bT(-1, 1, 0)+cT(0, 1, 1)=a(-1, 1)+b(1, 0)+c(0, 1)=(-a+b, a+c)=(-x, x+y), where x, y∈R.
The linear transformation T:R3→R2 associated with the matrix 2×3 A w.r.t. the basis B1 and B2 is T(x, y, z)=( -x, x+y), where x, y∈R.