Maximum Likelihood Decoding of Linear Codes on Binary-Input Memoryless Channels

Consider a Gaussian distribution given by its pdf f(x)=152πe(xπ)250f(x) = \frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-\pi)^2}{50}}. Choose the correct options for the mean and variance, respectively, for the given distribution.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Suppose A={1,π,3,2.8,5,25}A = \{1, \pi, 3, 2.8, -5, 25\}. Find x^=argmaxxAx2\hat{x} = arg \max_{x \in A} x^2.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Choose the correct option for given two statements. 1. BEC can flip bit value. 2. BSC can erase bit value. \\ \text{1. BEC can flip bit value. }\\ \text{2. BSC can erase bit value.}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Let C=\mathcal{C} = {(0,0,0,,0),\{(0,0,0,\cdots,0), (1,1,1,,1)}(1,1,1,\cdots,1)\} be a nn-length code. Suppose a codeword from C\mathcal{C} is transmitted over a BEC(ϵ)BEC(\epsilon). Find the maximum number of erasures that allows unambiguous recovery of the transmitted codeword.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Suppose x\textbf{x} =(1,0,1,1)= (1,0,1,1) is being transmitted over Binary Symmetric Channel. Choose the valid received vector.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation