Maximum Likelihood Decoding of Linear Codes on Binary-Input Memoryless Channels

1. Consider a Gaussian distribution given by its pdf f(x)=152πe(xπ)250f(x) = \frac{1}{5\sqrt{2\pi}}e^{-\frac{(x-\pi)^2}{50}}. Choose the correct options for the mean and variance, respectively, for the given distribution.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2. Suppose A={1,π,3,2.8,5,25}A = \{1, \pi, 3, 2.8, -5, 25\}. Find x^=argmaxxAx2\hat{x} = arg \max_{x \in A} x^2.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3. Choose the correct option for given two statements. 1. BEC can flip bit value. 2. BSC can erase bit value. \\ \text{1. BEC can flip bit value. }\\ \text{2. BSC can erase bit value.}
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4. Let C=\mathcal{C} = {(0,0,0,,0),\{(0,0,0,\cdots,0), (1,1,1,,1)}(1,1,1,\cdots,1)\} be a nn-length code. Suppose a codeword from C\mathcal{C} is transmitted over a BEC(ϵ)BEC(\epsilon). Find the maximum number of erasures that allows unambiguous recovery of the transmitted codeword.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

5. Suppose x\textbf{x} =(1,0,1,1)= (1,0,1,1) is being transmitted over Binary Symmetric Channel. Choose the valid received vector.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation