Laplace transform

Laplace transform

The Laplace transform of a continuous time signal x(t)\text{x}(t) can be expressed as: X(s)=x(t)estdt\text{X}(s) = \int_{-\infty}^{\infty} \text{x}(t) e^{-st} dt

Where s=σ+jωs = \sigma + j \omega represent a complex frequency on a complex number plane.

est=e(σ+jω)t=eσtejωt e^{-st} = e^{-(\sigma+j\omega)t} = e^{-\sigma t} e^{-j\omega t}

We can clearly see that

Re{est}=eσtcos(ωt)Re\{e^{-s t}\} = e^{-\sigma t} \cos(\omega t)

Im{est}=eσtsin(ωt)Im\{e^{-s t}\} = - e^{-\sigma t} \sin(\omega t)

Eigenfunctions of LTI systems

Let the system h(t)h(t) be a linear and time invariant (LTI) system and the input x(t)=est\text{x}(t) = e^{st}. The output y(t)\text{y}(t) of this system can be written as

drawing

y(t)=esth(t) \text{y}(t) = e^{st} * h(t)

       =h(τ)es(tτ)dτ~~~~~~~ = \int_{-\infty}^{\infty} h(\tau) e^{s(t-\tau)} d\tau

       = h(τ) est esτ dτ~~~~~~~ = \int_{-\infty}^{\infty}~ h(\tau) ~e^{st}~ e^{-s\tau} ~d\tau

       =est h(τ) esτdτ~~~~~~~= e^{st} \int_{-\infty}^{\infty}~ h(\tau)~ e^{-s\tau} d\tau

       =H(s)est~~~~~~~ = H(s) e^{st}

este^{st} is known as eigen function for LTI system and it preserved the shape of the input signal.

Note:

  1. All RLC circuits are LTI systems

  2. Any AC source always gives sinusoidal voltage/current across any part of the circuit

  3. The amplitude and phase might change but the shape remains the same

The Laplace transform has always two parts:

  1. Mathematical expression

  2. Region of convergence: the region in s-plane, where the mathematical expression is valid.

Example:

  1. x(t)=etu(t)\text{x}(t) = e^{-t} u(t)

    Solution: We know that Laplace tranform is given as:

                      X(s)= inftyx(t)estdt~~~~~~~~~~~~~~~~~~~~~~\text{X}(s) = \int_{-\infty}^{\ infty} \text{x}(t) e^{-st} dt

                               =0etestdt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \int_{0}^{\infty} e^{-t} e^{-st} dt

                               =0 infitye(s+1)tdt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \int_{0}^{\ infity} e^{-(s+1)t} dt

                               =1s+1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~= \frac{1}{s+1}

  • Region of convergence (ROC) is region in the s-plane where the above expression is valid.

  • The expression is valid if Re{s+1}>0Re{\{s+1\}} > 0 i.e. Re{s}>1Re{\{s\}} > -1. s=1 s = -1 is a point of singularity.

drawing

Let X(s)\text{X}(s) be the polynomials in ss variable as below:

X(s)=A(s)B(s)\text{X}(s) = \frac{\text{A}(s)}{\text{B}(s)}

Roots of A(s)\text{A}(s) i.e. A(s)=0 \text{A}(s) = 0 \rightarrow zeros

Roots of B(s)\text{B}(s) i.e. A(s)=0\text{A}(s) = 0 \rightarrow poles

Note: Poles play important role to decide ROC nit ROC cannot have poles within them.

Exercise:

What is the ROC in above example?

drawing

Linear constant coefficient differential equations (LCCDE):

Any linear constant coefficient differential equations (LCCDE) in Laplace domain can be expressed as ratio of polynomials.

Example: Let x(t)=dydt+a y(t)\text{x}(t) = \frac{d\text{y}}{dt} + a~\text{y}(t)

Taking Laplace transform of the above equation:

           X(s)=sY(s)+aY(s) ~~~~~~~~~~~\text{X}(s) = s\text{Y}(s) + a \text{Y}(s)

           X(s)=(s+a) Y(s)~~~~~~~~~~~ \text{X}(s) = (s + a)~ \text{Y}(s)

           Y(s)=X(s)s+a~~~~~~~~~~~\text{Y}(s) = \frac{\text{X}(s)}{s + a}

           H(s)=Y(s)X(s)=1s+a~~~~~~~~~~~ \text{H}(s) = \frac{\text{Y}(s)}{\text{X}(s)} = \frac{1}{s + a}

Here H(s)\text{H}(s) is known as transfer function or system function.

Application of Laplace transform for system analysis – Causality and stability

drawing

Let h(t)h(t) be the system with input x(t)\text{x}(t) and output being y(t)\text{y}(t).

     y(t)=x(t)h(t)~~~~~\text{y}(t) = \text{x}(t) * h(t)

The system input-output relationship in Laplace transform can be expressed as:

   Y(s)=X(s)H(s)~~~\text{Y}(s) = \text{X}(s) \text{H}(s)

We are interested in additional system properties and their effect on impulse response and system function

Causality of LTI system:

For LTI system to be causal, we should have

    h(t)=0,   t<0~~~~h(t) =0, ~~\forall~ t<0

    y(t)=x(t)h(t)=x(τ)h(tτ)dτ~~~~ \text{y}(t) = \text{x}(t)*h(t) = \int_{-\infty}^{\infty} \text{x}(\tau) h(t-\tau) d\tau

For Causality: we should only use x(τ)\text{x}(\tau) for τt\tau \leq t

τ>t, h(tτ)=0\tau > t,~ h(t-\tau) = 0

h(t)=0   t<0h(t) = 0~~ \forall~ t<0

  • For a causal system (h(t)h(t) is a right-sided signal) , what is nature of H(s)\text{H}(s) ?

  • ROC of H(s)\text{H}(s) will be right-sided plane. (Converse is not true in general)

  • For a system with rational system function, causality is equivalent to the ROC being right-sided plane to the right of right most pole.

Example:

  1. H(s)=1s+1 and Re{s}>1\text{H}(s) = \frac{1}{s+1}~\text{and}~ Re\{s\} > -1

          h(t)=etu(t)~~~~~~~~~~h(t) = e^{-t} u(t) (Causal)

  1. H(s)=ess+1\text{H}(s) = \frac{e^s}{s+1} and Re{s}>1Re\{s\} > -1

          h(t)=e(t+1)u(t+1)~~~~~~~~~~h(t) = e^{-(t+1)} u(t+1) (Non-causal)

Stability of LTI system (bounded input bounded output):

An LTI system is said to be stable if

h(t)dt<\int_{\infty}^{\infty} |h(t)| dt < \infty

i.e. h(t)h(t) is absolutely integrable

We know Laplace transform is given as:

    H(s)=h(t)estdt~~~~\text{H}(s) = \int_{\infty}^{\infty} h(t) e^{-st} dt

H(s)s=0=h(t)dt< \text{H}(s)|_{s=0} = \int_{\infty}^{\infty} h(t) dt < \infty

Laplace transform converges at s=0s=0, In fact, for any s=jω=0+jω, H(s)s=jω<s=j\omega = 0+j\omega, ~\text{H}(s)|_{s=j\omega} < \infty \rightarrow system is stable

Note: jωj\omega-axis i.e. Re{s}=0Re\{s\} = 0 is part of the ROC

Example:

  1. Shifting operator: h(t)=δ(tt0)h(t) = \delta(t-t_0)Taking Laplace transform: H(s)=est0 \text{H}(s) = e^{st_0} ROC: Full ss-plane (stable)
  2. Integrator: h(t)=u(t)h(t) = u(t)
    Taking Laplace transform: H(s)=1s\text{H}(s) = \frac{1}{s} ROC: Re{s}>0Re\{s\} > 0 (Not stable)

Note: A causal system with rational system function is stable if and only if: all the poles have negative real part

Frequency analysis and geometric interpretation:

Let H(s)=1s+1 \text{H}(s) = \frac{1}{s+1}

The pole-zero plot on ss-plane is

drawing

Evaluating H(s)\text{H}(s) at any point at s=s0s = s_0 in the ss-plane

H(s)s=s0=1s0+1\text{H}(s)|_{s=s_0} = \frac{1}{s_0 +1}

drawing

H(s)s=s0=H(s0)ejH(s0)\text{H}(s)|_{s=s_0} = |\text{H}(s_0)| e^{j\angle \text{H}(s_0)}

H(s0)=1s0+1|\text{H}(s_0)| = \frac{1}{|s_0 + 1|} and H(s0)=θ\angle \text{H}(s_0) = \theta

Given a rational system function:

H(s)=i=1M(szi)i=1N(spi)and ROC N>M\text{H}(s) = \frac{\prod_{i=1}^{M} (s-z_i)}{\prod_{i=1}^{N } (s-p_i)} \quad \text{and ROC~} N>M

H(s)s=s0=i=1M(szi)i=1Ns0Pi|\text{H}(s)|_{s=s_0} = \frac{\prod_{i=1}^{M} (s-z_i)}{\prod_{i=1}^{N }|s_0 - P_i|}

H(s)s=s0=i=1M(s0zi)i=1N(s0Pi)\angle \text{H}(s)|_{s=s_0} = \sum_{i=1}^{M} \angle(s_0 – \text{z}_i) - \sum_{i=1}^{N} \angle (s_0 – P_i)

Example: Let x(t)=cos(ω0t)\text{x}(t) = \cos(\omega_0 t) for given H(s)=1s+1\text{H}(s) = \frac{1}{s+1} and Re{s}>1Re\{s\} > -1

cos(ω0t)11+ω02cos(ωotθ)\cos(\omega_0 t) \rightarrow \frac{1}{\sqrt{1+\omega_0^2}} \cos({\omega_ot-\theta})

where θ=tan1(ω0)\theta = tan^{-1}({\omega_0})

H(jωo)=11+ω02|\text{H}(j\omega_o)| = \frac{1}{\sqrt{1+\omega_0^2}} \rightarrow Low pass filter

For any LTI system cos(ωo)H(jωo)cos(ωotθ) \cos({\omega_o}) \rightarrow |\text{H}(j\omega_o)|\cos({\omega_ot-\theta})

and θ= H(jω0)\theta = \angle ~\text{H}{(j\omega_0})

where H(jωo)magnitude response|\text{H}(j\omega_o)| \rightarrow \text{magnitude response} and H(jωo)phase response\angle \text{H}(j\omega_o) \rightarrow \text{phase response}

The H(s)=ss+1\text{H}(s) = \frac{s}{s+1} \rightarrow High Pass filter