System of Linear Equations: Jacobi Method
[ 100 13.9869 26.5369 26.5369 − 33.1709 − 29.7082 48.772 − 23.465 35.839 ] ⋅ X = [ 67.3986 69.4181 7.1902 ] \begin{bmatrix} 100 & 13.9869 & 26.5369 \\ 26.5369 & -33.1709 & -29.7082 \\ 48.772 & -23.465 & 35.839 \end{bmatrix} ⋅ X = \begin{bmatrix} 67.3986\\ 69.4181\\ 7.1902 \end{bmatrix} 100 26.5369 48.772 13.9869 − 33.1709 − 23.465 26.5369 − 29.7082 35.839 ⋅ X = 67.3986 69.4181 7.1902 Perform pivoting.
Explanation
Explanation
Explanation
Explanation
[ 100 13.9869 26.5369 26.5369 − 33.1709 − 29.7082 48.772 − 23.465 35.839 ] ⋅ X = [ 67.3986 69.4181 7.1902 ] \begin{bmatrix} 100 & 13.9869 & 26.5369 \\ 26.5369 & -33.1709 & -29.7082 \\ 48.772 & -23.465 & 35.839 \end{bmatrix} ⋅ X = \begin{bmatrix} 67.3986\\ 69.4181\\ 7.1902 \end{bmatrix} 100 26.5369 48.772 13.9869 − 33.1709 − 23.465 26.5369 − 29.7082 35.839 ⋅ X = 67.3986 69.4181 7.1902 Take the tolerance as 10-6. Start with initial huess solution [0 0 0]T. Perform Jacobi iteration and find X.
Explanation
Explanation
Explanation
Explanation
Submit Quiz