Gaussian Random Vectors

1: Let XN(μX,ΣX)X \sim N(\mu_X, \Sigma_X) be a bivariate Gaussian random vector, where μX=[01]\mu_X = \begin{bmatrix} 0 \\ 1 \end{bmatrix} and ΣX=[10.50.52]\Sigma_X = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 2 \end{bmatrix}. Find the conditional distribution of X1X_1 given X2=1X_2 = 1.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

2: Suppose XN(μX,ΣX)X \sim N(\mu_X, \Sigma_X) is a Gaussian random vector in R2\mathbb{R}^2, where ΣX=[10.70.71]\Sigma_X = \begin{bmatrix} 1 & 0.7 \\ 0.7 & 1 \end{bmatrix}. What is the correlation coefficient ρ(X1,X2)\rho(X_1, X_2)?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

3: Given the cumulative distribution function (CDF) of the standard normal distribution, what is the value of limxΦ(x)\lim_{x \to \infty} \Phi(x) and limxΦ(x)\lim_{x \to -\infty} \Phi(x)?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

4: What is the value of the CDF of the standard normal distribution at x=0x = 0?
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation