System of Linear Equations: Gaussian Seidel with relaxation Method

[148.0340.128530.70764.27518.292718.178841.36154.92359.5546]X=[35.849797.259249.5498]\begin{bmatrix} -148.03 & -40.1285 & -30.7076 \\ 4.275 & -18.2927 & -18.1788 \\ -41.3615 & 4.9235 & 9.5546 \end{bmatrix} ⋅ X = \begin{bmatrix} -35.8497 \\ -97.2592 \\ 49.5498 \end{bmatrix} Perform pivoting.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

[148.0340.128530.70764.27518.292718.178841.36154.92359.5546]X=[35.849797.259249.5498]\begin{bmatrix} -148.03 & -40.1285 & -30.7076 \\ 4.275 & -18.2927 & -18.1788 \\ -41.3615 & 4.9235 & 9.5546 \end{bmatrix} ⋅ X = \begin{bmatrix} -35.8497 \\ -97.2592 \\ 49.5498 \end{bmatrix} Start with initial guess solution [0 0 0]T. Perform Gauss Seidel iteration and find the 1st 3 row of the matrix. Relaxation factor = 0.5.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation