System of Linear Equations - Gaussian Seidel

[185.423631.416130.602217.443910.043847.534825.50325.81692.5353]X=[19.154421.53676.5871]\begin{bmatrix} 185.4236 & -31.4161 & -30.6022 \\ 17.4439 & -10.0438 & -47.5348 \\ 25.5032 & -5.8169 & 2.5353 \end{bmatrix} ⋅ X = \begin{bmatrix} 19.1544\\ -21.5367\\ 6.5871 \end{bmatrix} Perform pivoting
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

[185.423631.416130.602217.443910.043847.534825.50325.81692.5353]X=[19.154421.53676.5871]\begin{bmatrix} 185.4236 & -31.4161 & -30.6022 \\ 17.4439 & -10.0438 & -47.5348 \\ 25.5032 & -5.8169 & 2.5353 \end{bmatrix} ⋅ X = \begin{bmatrix} 19.1544\\ -21.5367\\ 6.5871 \end{bmatrix} Start with initial guess solution [0 0 0]T. Perform Gauss Seidel iteration and find the 1st 3 row of the matrix.
Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation

Explanation