System of Linear Equations - Gaussian Seidel
[ 185.4236 − 31.4161 − 30.6022 17.4439 − 10.0438 − 47.5348 25.5032 − 5.8169 2.5353 ] ⋅ X = [ 19.1544 − 21.5367 6.5871 ] \begin{bmatrix} 185.4236 & -31.4161 & -30.6022 \\ 17.4439 & -10.0438 & -47.5348 \\ 25.5032 & -5.8169 & 2.5353 \end{bmatrix} ⋅ X = \begin{bmatrix} 19.1544\\ -21.5367\\ 6.5871 \end{bmatrix} 185.4236 17.4439 25.5032 − 31.4161 − 10.0438 − 5.8169 − 30.6022 − 47.5348 2.5353 ⋅ X = 19.1544 − 21.5367 6.5871 Perform pivoting
Explanation
Explanation
Explanation
Explanation
[ 185.4236 − 31.4161 − 30.6022 17.4439 − 10.0438 − 47.5348 25.5032 − 5.8169 2.5353 ] ⋅ X = [ 19.1544 − 21.5367 6.5871 ] \begin{bmatrix} 185.4236 & -31.4161 & -30.6022 \\ 17.4439 & -10.0438 & -47.5348 \\ 25.5032 & -5.8169 & 2.5353 \end{bmatrix} ⋅ X = \begin{bmatrix} 19.1544\\ -21.5367\\ 6.5871 \end{bmatrix} 185.4236 17.4439 25.5032 − 31.4161 − 10.0438 − 5.8169 − 30.6022 − 47.5348 2.5353 ⋅ X = 19.1544 − 21.5367 6.5871 Start with initial guess solution [0 0 0]T. Perform Gauss Seidel iteration and find the 1st 3 row of the matrix.
Explanation
Explanation
Explanation
Explanation
Submit Quiz