Forging Hammer as 2DOF system - Impulse Excitation

Impulse force can be defined as a force of large magnitude that acts for a short time. It can be measured by finding the change it causes in the momentum of system.

Impulse=FΔT=mx˙2mx˙1\text{Impulse} = F \Delta T = m \dot{x}_2 - m \dot{x}_1

The initial conditions are given by

x(t=0)=x0=0x(t=0) = x_0 = 0
x˙(t=0)=x˙0=1m\dot{x}(t=0) = \dot{x}_0 = \frac{1}{m}

Forging is a manufacturing process which involves shaping metals using localized compressive forces i.e., blows are delivered by hammers on the billet.

The governing differential equation are,

m1x¨1(t)+(k1+k2)x1(t)k2x2(t)=0m_1 \ddot{x}_1(t) + (k_1 + k_2) x_1(t) - k_2 x_2(t) = 0
m2x¨2(t)k2x1(t)+k2x2(t)=0m_2 \ddot{x}_2(t) - k_2 x_1(t) + k_2 x_2(t) = 0

Writing in matrix form,

[m100m2]{x¨1(t)x¨2(t)}+[k1+k2k2k2k2]{x1(t)x2(t)}={00}\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix} \begin{Bmatrix} \ddot{x}_1(t) \\ \ddot{x}_2(t) \end{Bmatrix} + \begin{bmatrix} k_1 + k_2 & -k_2 \\ -k_2 & k_2 \end{bmatrix} \begin{Bmatrix} x_1(t) \\ x_2(t) \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}

Where,

x1(t)=X1cos(ωt+ϕ)x_1(t) = X_1 \cos(\omega t + \phi)
x2(t)=X2cos(ωt+ϕ)x_2(t) = X_2 \cos(\omega t + \phi)

Substituting this and writing in the matrix form,

[m1ω2+k1+k2k2k2m2ω2+k2]{X1X2}={00}\begin{bmatrix} -m_1 \omega^2 + k_1 + k_2 & -k_2 \\ -k_2 & -m_2 \omega^2 + k_2 \end{bmatrix} \begin{Bmatrix} X_1 \\ X_2 \end{Bmatrix} = \begin{Bmatrix} 0 \\ 0 \end{Bmatrix}

To obtain the solution the determminant of the coefficient of X1X_1 and X2X_2 must be zero,

(m1m2)ω4{(k1+k2)m2+k2m1}ω2+(k1+k2)k2k22=0(m_1 m_2) \omega^4 - \{(k_1 + k_2) m_2 + k_2 m_1\} \omega^2 + (k_1 + k_2) k_2 - k_2^2 = 0

where, ω1\omega_1 and ω2\omega_2 are roots of the equations,

ω12,ω22=12{(k1+k2)m2+k2m1m1m2}12{((k1+k2)m2+k2m1m1m2)24(k1+k2)k2k22m1m2}1/2\omega_1^2, \omega_2^2 = \frac{1}{2} \left\{ \frac{(k_1 + k_2) m_2 + k_2 m_1}{m_1 m_2} \right\} \mp \frac{1}{2} \left\{ \left( \frac{(k_1 + k_2) m_2 + k_2 m_1}{m_1 m_2} \right)^2 - 4 \frac{(k_1 + k_2) k_2 - k_2^2}{m_1 m_2} \right\}^{1/2}

The mode shape,

For the first mode X1={X1(1)X2(1)}=X1(1){1r1}where r1=X2(1)X1(1)X_1 = \begin{Bmatrix} X_1^{(1)} \\ X_2^{(1)} \end{Bmatrix} = X_1^{(1)} \begin{Bmatrix} 1 \\ r_1 \end{Bmatrix} \quad \text{where } r_1 = \frac{X_2^{(1)}}{X_1^{(1)}}

Fot the second mode X2={X1(2)X2(2)}=X1(2){1r2}where r2=X2(2)X1(2)X_2 = \begin{Bmatrix} X_1^{(2)} \\ X_2^{(2)} \end{Bmatrix} = X_1^{(2)} \begin{Bmatrix} 1 \\ r_2 \end{Bmatrix} \quad \text{where } r_2 = \frac{X_2^{(2)}}{X_1^{(2)}}

The general form of equation of motion of m1m_1 and m2m_2 are,

x1=X1(1)cos(ω1t+ϕ1)+X1(2)cos(ω2t+ϕ2)x_1 = X_1^{(1)} \cos(\omega_1 t + \phi_1) + X_1^{(2)} \cos(\omega_2 t + \phi_2)
x2=r1X1(1)cos(ω1t+ϕ1)+r2X1(2)cos(ω2t+ϕ2)x_2 = r_1 X_1^{(1)} \cos(\omega_1 t + \phi_1) + r_2 X_1^{(2)} \cos(\omega_2 t + \phi_2)

The initial conditions (at t=0t = 0) are,

x1=0x˙1=0x_1 = 0 \quad \dot{x}_1 = 0
x2=0x˙2=0x_2 = 0 \quad \dot{x}_2 = 0

Based on the initial conditions, X1(1)X_1^{(1)}, X1(2)X_1^{(2)}, ϕ1\phi_1 and ϕ2\phi_2 can be obtained.