Density, Specific Gravity and Specific Weight
Properties of fluid
Density or mass density
$$ \rho = \frac{Mass\ of\ fluid }{Volume\ of\ liquid}$$The SI unit of density is kg/m3
Specific weight or weight density
$$w = \frac{Weight\ of\ fluid }{Volume\ of\ liquid} = \frac{(Mass\ of\ fluid) * Accelaration\ due\ to\ gravity}{Volume\ of\ fluid}$$$$= \frac{Mass\ of\ fluid\ *\ g}{Volume\ of\ fluid} $$
$$ = \rho\ *\ g $$
$$ w = \rho $$
The SI unit of specific weight is N/m3
Specific volume
$$ specific\ volume = \frac{Volume\ of\ fluid }{Mass\ of\ liquid} = \frac{1}{\frac{Mass\ of\ fluid}{Volume\ of\ fluid}} = \frac{1}{\rho}$$Specific gravity
$$ S(for\ liquids) = \frac{weight\ density\ (density)\ of\ liquid}{weight\ density\ (density)\ of\ water}$$$$ density\ of\ liquid = S\ *\ density\ of\ water = S\ *\ 1000\ kg/m^3$$
Viscosity
$$ \mu = \frac{shear\ stress}{\frac{change\ of\ velocity}{change\ of\ distance}} = \frac{force/area}{\frac{length}{time} * \frac{1}{length}} $$ $$ = \frac{force/(length)^2}{\frac{1}{time}} = \frac{force * time}{(length)^2} $$The SI unit of viscosity is Ns/m2
1 Ns/m2 = 10 poise
1 centipoise = 1/100 poise
Kinematic viscosity
$$ \nu = \frac{viscosity}{density} = \frac{\mu}{\rho} $$The SI unit of kinematic viscosity is m2/s
1 stoke = 10-4 m2/s
1 centistoke = 1/100 stoke
Compressibility and Bulk Modulus
$$ Bulk\ modulus\ (K) = \frac{increase\ of\ pressure}{volumetric\ strain} $$
$$ = \frac{dp}{\frac{-d \forall}{\forall}} = \frac{-dp}{d \forall} \forall $$
$$ compressability = \frac{1}{K} $$
The SI unit of bulk modulud is N/m2
Volumetric strain
$$ volumetric\ strain = \frac{-d \forall}{\forall} $$