Signal | Parameter 1 | Parameter 2 | Formula |
---|---|---|---|
Sine | Frequency | Amplitude | \( x(t) = A\ \texttt{sin}(\frac{2\pi kt}{N}) \) |
Cosine | Frequency | Amplitude | \( x(t) = A\ \texttt{cos}(\frac{2\pi kt}{N}) \) |
Ramp | - | Amplitude | \( x(t) = A\ t \) |
Pulse | - | Amplitude | \( x(t) = A\ \mathcal{I}_{[\frac{-2}{3},\frac{2}{3}]} \) |
Haar | Scale Parameter | Amplitude | \( x(t) = A\ \mathcal{I}_{[-2,-2+\frac{1}{2^{s-1}}]} - \mathcal{I}_{[-2+\frac{1}{2^{s-1}},-2+\frac{1}{2^{s-2}}]} \) |
Complex Exponential | Frequency | Amplitude | \( x(t) = A\ e^{jft} \) |
Signal | Parameter 1 | Parameter 2 | Formula |
---|---|---|---|
Sine | Frequency | Amplitude | \( x(t) = A\ \texttt{sin}(\frac{2\pi kt}{N}) \) |
Cosine | Frequency | Amplitude | \( x(t) = A\ \texttt{cos}(\frac{2\pi kt}{N}) \) |
Ramp | - | Amplitude | \( x(t) = A\ t \) |
Pulse | - | Amplitude | \( x(t) = A\ \mathcal{I}_{[\frac{-2}{3},\frac{2}{3}]} \) |
Haar | Scale Parameter | Amplitude | \( x(t) = A\ \mathcal{I}_{[-2,-2+\frac{1}{2^{s-1}}]} - \mathcal{I}_{[-2+\frac{1}{2^{s-1}},-2+\frac{1}{2^{s-2}}]} \) |
Complex Exponential | Frequency | Amplitude | \( x(t) = A\ e^{jft} \) |
Signal | Parameter 1 | Parameter 2 | Formula |
---|---|---|---|
Sine | Frequency | Amplitude | \( x(t) = A\ \texttt{sin}(\frac{2\pi kt}{N}) \) |
Cosine | Frequency | Amplitude | \( x(t) = A\ \texttt{cos}(\frac{2\pi kt}{N}) \) |
Ramp | - | Amplitude | \( x(t) = A\ t \) |
Pulse | - | Amplitude | \( x(t) = A\ \mathcal{I}_{[\frac{-2}{3},\frac{2}{3}]} \) |
Haar | Scale Parameter | Amplitude | \( x(t) = A\ \mathcal{I}_{[-2,-2+\frac{1}{2^{s-1}}]} - \mathcal{I}_{[-2+\frac{1}{2^{s-1}},-2+\frac{1}{2^{s-2}}]} \) |
Complex Exponential | Frequency | Amplitude | \( x(t) = A\ e^{jft} \) |