-
Problem 1:
Given a list of n distinct numbers (where n <= 1000), find the length of the longest monotone decreasing subsequence.
Definition : A monotone decreasing subsequence is a sequence of numbers (contiguously placed in the list) which
are strictly decreasing from left to right. For example, if we have the series �2 1 9 8 10 7 5 4 3 1 10�,
then the subsequence �10 7 5 4 3 1� is contiguously arranged and monotonically decreasing. Thus the
answer to be printed out for the length of � 10 7 5 4 3 1� which is 6. Note that the sequence �9 8 7 5
4 3 1� is not a subsequence we are looking for as the numbers are not contiguous placed in the list.
Input Specification
Input will contain some positive integers separated by spaces. The number of integers is not specified and the input will be terminated by end of file.Each integer is <= 10^9 and the length of the input sequence is <= 10^7
Output Specification
Print the length of the longest continuous decreasing subsequence
Sample Input and Output
Input: 2 1 9 8 10 7 5 4 3 1 10
Output:6
Input: 1 2 3 4 5 6 7 8
Output: 1
Problem 2:
Given a set of n distinct numbers, find the length of the longest monotone increasing subsequence. Note that the sequence need not be continuous(Refer: Section 4.7 of Dromey).
Input Specification
Input will contain two lines. The first line contains the number of integers in the sequence , N(<=1000) and the next line contains N
positive integers (each <=10^9).
Output Specification
Print the length of the longest increasing subsequence of the given input sequence
Sample Input and Output
Input:
10
1 2 9 4 7 3 11 8 14 6
Output:6
Input: 6
1 3 2 10 4 5
Output: 4