Heat transfer by Natural Convection

Objective

To calculate heat transfer coefficient and heat transfer rate from vertical cylinder in natural convection.

apparatus

Diameter, d = 44mm

Length t = 500mm

Voltage

T1 (°C) 10
T2 (°C) 10
T3 (°C) 10
T4 (°C) 10
T5 (°C) 10
T6 (°C) 10
T7 (°C) 10

Temperature Gradient

Move the cursor to the graph to see the points

Volumetric coefficient
$$\beta = \frac{1}{T_m(Mean Temperature)}$$

$$1/K$$

Grashof number

$$\gamma = 1.846*10^{-5}m^2/s$$

$$T_s: Surface \space temperature $$

$$T_a:Ambient \space(or\space bulk\space fluid) \space temperature $$

$$g: Acceleration\space due\space to\space gravity$$

$$Gr =$$

Nusselt Number,

$$Nu = 0.53(R_a)^{1/4}, if \space R_a \lt 10^5$$

$$0.56(R_a)^{1/4}, if \space 10^5 \lt R_a \lt 10^8$$

$$0.13(R_a)^{1/3}, if \space 10^8 \lt R_a \lt 10^{12}$$

$$Ra = Gr.Pr .... Pr = 0.697$$

$$Nu =$$

Heat transfer coefficient,

$$h = \frac{Nu.k}{L}$$

$$k = 0.02861$$

$$h =$$

$$W/m^2K$$

Heat transfer rate

$$Qc = h.A.(T_s - T_a)$$

$$A = \pi.Ds.L$$

$$Qc =$$

$$W$$