Message Authentication Codes

Need, Construction and Attacks

Problem of Data Integrity

How to prevent such a modification of data?

Does Encryption Guarantee Integrity?

Answer: NO!

For example, consider the encryption using stream ciphers (PRG)

- c = G(k) ⊕ ^m
- ciphertext can be manipulated and plaintext is correspondingly modified !

As long as almost all ciphertexts corresponds to some valid plaintext, it is easy for the adversary to "spoof" it

Data Authentication using a MAC

Components of the Authentication Protocol

- න A Key Generation Algorithm that returns a secret key *k*
- න A MAC generating algorithm that returns a tag for a given message *m*. Tag *t = MAC_k (m)*
- න A Verification algorithm that returns a bit b = Verify $_{\rm k}$ (m $_{\rm 1}$, t $_{\rm 1}$), given a message m $_{\rm 1}$ and a tag *t1*
- so If the message is not modified then with high probability, the value of *b* is true otherwise false

Security of MAC

Mac-Game(n)

Let Q be the set of all queries from Adv to oracle

Output of the Game is 1 if and only if:

Verify_k(m,t) =1 and m is not in Q

A message authentication code (Gen,MAC,Verify) is secure if for all probabilistic polynomial-time adversaries *A*, there exists a negligible function negl such that

 $Pr[Mac-Game(n) = 1] \leq negl(n)$

Replay Attack

Construction of MAC using a PRF

Gen (1ⁿ) chooses k to be a random n-bit string

MACk (m) = Fk (m) = t (the tag)

 $\bm{Verify}_k\left(\bm{m},\ \bm{t}\right) = \bm{Accept},\ \text{if and only if}\ \bm{t} = \bm{F}_k\left(\bm{m}\right)$

Theorem: If F is a pseudorandom function, the above scheme is a secure *fixed length* **MAC**

Variable Length MACs (Method 1)

- ∞ Partition the message *m* to *n* sized blocks $m_1 m_2 ... m_q$
- $\mathcal{L}_{\mathcal{D}}$ Calculate $\mathsf{MAC}_k(m) = \mathsf{MAC}_k(m_1 \oplus m_2 \ldots \oplus m_q)$ so Is this method Secure?
- ∞ NO! We are authenticating the *xor* of the message blocks but not the message itself. So we can always choose a message whose *xor* value is the same as some other message

Variable Length MACs (Method 2)

- Y Concatenate the TAG values of all blocks calculated separately
- ∞ But the adversary can rearrange the message blocks and respective tags generating the new message and tag

» Not Secure!

Variable Length MACs (Method 3)

 ∞ To prevent the reordering in previous method, we use sequence numbers. But consider the problem below: **m**:**m':**

 ∞ Then **t''** is a valid tag on **m''**. Not Secure!

Variable Length MACs (Method 4)

 ∞ To prevent the above attack we need to keep track of previous message's last sequence number and continue the sequence. So, we send it as

1, m₁ 2, m₂ 3, m'₁ 4, m'₂ **m**: **^m':t ⁼** $t' = MAC_k(m')$:

» The adversary cannot re-arrange the blocks. Secure! But, is it practically useful?

Cipher Block Chaining MAC (CBC-MAC)

CBC-MAC Construction

But again, CBC-MAC is secure for fixed length messages but not for variable length messages! Why?

Problem with Variable Length CBC-MAC

Mallory chooses these two messages that Alice has sent

Problem with Variable Length CBC-MAC

Mallory has two message pairs as shown above. She now can construct a new message shown below

Mallory can now send this new valid pair *(m' , t')* to Bob

CBC-MAC Construction

A secure CBC-MAC for variable length messages

Prepend length of the message |m| (encoded as an n-bit string) to m and then compute the tag (appending the length to the end is not secure!)

 F_{k}

|m| |m|

Remark: Another approach (advantageous if the message length is unknown in the beginning) is to use two keys k1 and k2 and set $t = F_{k2}(CBC-MAC_{k1}(m))$

.. .