
Need, Construction and Attacks

Banktransfer 1000 rupees to Evetransfer 1000 rupees to Eve

transfer 1000 rupees to Bobtransfer 1000 rupees to Bob

How to prevent such a modification of data?

Alice

Mallory

Answer: NO!

For example, consider the encryption using stream ciphers (PRG)

• c = G(k) ⊕ m

• ciphertext can be manipulated and plaintext is correspondingly modified !

As long as almost all ciphertexts corresponds to some valid plaintext, it
is easy for the adversary to “spoof” it

Alice
Bob

Key Generator, Gen(1n)

k k

MAC Generator

c = (m, t = MACk(m))

(m, k)MACk(m)

MAC Generator

(m, k)MACk(m)If Verifyk(m,t) = true
then accept m else
reject

A Key Generation Algorithm that returns a secret
key k
A MAC generating algorithm that returns a tag for a
given message m. Tag t = MACk (m)
A Verification algorithm that returns a bit
b = Verifyk (m1, t1), given a message m1 and a tag
t1

If the message is not modified then with high
probability, the value of b is true otherwise false

Security of MAC

A message authentication code
(Gen,MAC,Verify) is secure if for all
probabilistic polynomial-time
adversaries A, there exists a negligible
function negl such that

Pr[Mac-Game(n) =1] ≤ negl(n)

Mac-Game(n)

Adversary

Proposed Scheme
(Gen(1n),MAC,Verify)

Key k

M
A

C
k (.) O

racle

(m,t)

1
n

Let Q be the set of all queries from Adv to oracle

Output of the Game is 1 if and only if:

Verifyk(m,t) =1 and m is not in Q

Alice
Bob

c = (m, t)

Mallory

(m, t)
(m, t)

(m, t)
(m, t)

(m, t)
(m, t)

. . .

Verify has no
“memory”, cannot
detect that (m, t) is not
fresh!

How to solve this problem?
Sequence numbers/timestamps can be used

Gen (1n) chooses k to be a random n-bit string

MACk (m) = Fk (m) = t (the tag)

Verifyk (m, t) = Accept, if and only if t = Fk (m)

Theorem: If F is a pseudorandom function, the above
scheme is a secure fixed length MAC

Partition the message m to n sized blocks
m1m2...mq

Calculate MACk(m) = MACk(m1 ⊕ m2 ... ⊕ mq)
Is this method Secure?

NO! We are authenticating the xor of the message
blocks but not the message itself. So we can
always choose a message whose xor value is the
same as some other message

Concatenate the TAG values of all blocks calculated
separately
But the adversary can rearrange the message blocks and
respective tags generating the new message and tag

Not Secure!

m:

t = MACk(m):

m’ = permutation(m):

t’ = permutation(t):

To prevent the reordering in previous method, we use
sequence numbers. But consider the problem below:

Then t’’ is a valid tag on m’’. Not Secure!

1, m1 2, m2

2,m’
21, m1

1,m’
1 2,m’

2

m:

t = MACk(m):

m’:

t’ = MACk(m’):

m’’ = first half from m || second half from m’

t’’ = first half from t || second half from t’

To prevent the above attack we need to keep track of
previous message’s last sequence number and continue
the sequence. So, we send it as

The adversary cannot re-arrange the blocks. Secure!
But, is it practically useful?

1, m1 2, m2 3, m’
1 4, m’

2

m: m’:

t = MACk(m): t’ = MACk(m’):

m1m1 m2m2 m3m3 mdmd
. . .

FkFk FkFk FkFk FkFk

MACk(m)MACk(m)

0n

But again, CBC-MAC is secure for fixed length messages but
not for variable length messages! Why?

m1m1

m2m2

Mallory chooses these two
messages that Alice has
sent

t1 = MACk(m1)t1 = MACk(m1)

t2 = MACk(m2)t2 = MACk(m2)

Mallory has two message pairs as shown above. She now
can construct a new message shown below

m1m1 m2 xor t1m2 xor t1

EkEk EkEk

t’= MACk(m’)t’= MACk(m’)

t’ = t2t’ = t2
t1t1

m2m2

Mallory can now send
this new valid pair
(m’ , t’) to Bob

m1m1 m2m2 m3m3 mdmd
. . .

FkFk FkFk FkFk FkFk

MACk(m)MACk(m)

A secure CBC-MAC for variable length messages

FkFk

|m||m|

Prepend length of the message |m| (encoded as an
n-bit string) to m and then compute the tag
(appending the length to the end is not secure!)

Remark: Another approach (advantageous if the message length
is unknown in the beginning) is to use two keys k1 and k2 and set

t = Fk2(CBC-MACk1(m))

	Security of MAC

