Message Authentication Codes

Need, Construction and Attacks

Problem of Data Integrity

How to prevent such a modification of data?

Does Encryption Guarantee Integrity?

Answer: NO!

For example, consider the encryption using stream ciphers (PRG)

- $c = G(k) \oplus m$
- ciphertext can be manipulated and plaintext is correspondingly modified !

As long as almost all ciphertexts corresponds to some valid plaintext, it is easy for the adversary to "spoof" it

Data Authentication using a MAC

Components of the Authentication Protocol

- ∞ A Key Generation Algorithm that returns a secret key k
- so A MAC generating algorithm that returns a tag for a given message m. Tag $t = MAC_k(m)$
- so A Verification algorithm that returns a bit $b = Verify_k(m_1, t_1)$, given a message m_1 and a tag t_1
- If the message is not modified then with high probability, the value of b is true otherwise false

Security of MAC

Mac-Game(n)

Let Q be the set of all queries from Adv to oracle

Output of the Game is 1 if and only if:

 $Verify_k(m,t) = 1$ and m is not in Q

A message authentication code (Gen,MAC,Verify) is secure if for all probabilistic polynomial-time adversaries *A*, there exists a negligible function negl such that

 $Pr[Mac-Game(n) = 1] \le negl(n)$

Replay Attack

Construction of MAC using a PRF

Gen (1ⁿ) chooses k to be a random n-bit string

 $MAC_k(m) = F_k(m) = t$ (the tag)

Verify_k (m, t) = Accept, if and only if $t = F_k (m)$

Theorem: If F is a pseudorandom function, the above scheme is a secure *fixed length* MAC

Variable Length MACs (Method 1)

- Partition the message m to n sized blocks $m_1m_2...m_q$
- So Calculate MAC_k(m) = MAC_k(m₁ ⊕ m₂ ... ⊕ m_q)
 So Is this method Secure?

NO! We are authenticating the xor of the message blocks but not the message itself. So we can always choose a message whose xor value is the same as some other message

Variable Length MACs (Method 2)

- Source the TAG values of all blocks calculated separately
- But the adversary can rearrange the message blocks and respective tags generating the new message and tag

∞ Not Secure!

Variable Length MACs (Method 3)

To prevent the reordering in previous method, we use sequence numbers. But consider the problem below:
 m: m':

∞ Then t" is a valid tag on m". Not Secure!

Variable Length MACs (Method 4)

To prevent the above attack we need to keep track of previous message's last sequence number and continue the sequence. So, we send it as

 m:
 m':

 1, m_1 2, m_2 3, m'_1 4, m'_2

 t = MAC_k(m):
 t' = MAC_k(m'):

The adversary cannot re-arrange the blocks. Secure! But, is it practically useful?

Cipher Block Chaining MAC (CBC-MAC)

CBC-MAC Construction

But again, CBC-MAC is secure for fixed length messages but not for variable length messages! Why?

Problem with Variable Length CBC-MAC

Mallory chooses these two messages that Alice has sent

m¹	$t_1 = MAC_k(m^1)$
m ²	$t_2 = MAC_k(m^2)$

Problem with Variable Length CBC-MAC

Mallory has two message pairs as shown above. She now can construct a new message shown below

Mallory can now send this new valid pair (*m*', *t*') to Bob

CBC-MAC Construction

A secure CBC-MAC for variable length messages

Prepend length of the message |m| (encoded as an n-bit string) to m and then compute the tag (appending the length to the end is not secure!)

F_k

m

Remark: Another approach (advantageous if the message length is unknown in the beginning) is to use two keys k1 and k2 and set $t = F_{k2}(CBC-MAC_{k1}(m))$