Row Echelon Form (REF)

Row echelon form is a simplified matrix form where each leading entry is to the right of the one above, making it ideal for solving linear systems using back-substitution.

A matrix is in Row Echelon Form if:

  • All rows of all zeroes are at the bottom.
  • The leading entry of each non-zero row is to the right of the leading entry of the row above it.
  • All entries below a pivot are zeros.

Input Matrix:

\( A = \begin{bmatrix} 1 & -2 & 1 \\ 1 & -1 & 2 \\ 0 & -2 & 2 \end{bmatrix} \)

Step 1: Eliminate below first pivot

Apply \( R_2 \leftarrow R_2 - R_1 \)

\( \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & -2 & 2 \end{bmatrix} \)

Step 2: Eliminate below pivot in 2nd column

Apply \( R_3 \leftarrow R_3 + 2R_2 \)

\( \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \)

Final REF:

\( \text{REF}(A) = \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 4 \end{bmatrix} \)

This matrix is now in row echelon form.