LU Decomposition

LU decomposition breaks a matrix into a product of a lower and an upper triangular matrix, simplifying linear equation solving and matrix inversion.

LU Decomposition is the process of factoring a matrix \( A \) into two triangular matrices: a lower triangular matrix \( L \) and an upper triangular matrix \( U \), such that:

\( A = L \cdot U \)

Matrix A

\( A = \begin{bmatrix} 2 & 4 & 3 & 5 \\ -4 & -7 & -5 & -8 \\ 6 & 8 & 2 & 9 \\ 4 & 9 & -2 & 14 \end{bmatrix} \)

Step 1: First Column Elimination

We eliminate the entries below the first pivot (2 in row 1):

  • \( R_2 \leftarrow R_2 + 2 \cdot R_1 \) → Multiplier: -2
  • \( R_3 \leftarrow R_3 - 3 \cdot R_1 \) → Multiplier: 3
  • \( R_4 \leftarrow R_4 - 2 \cdot R_1 \) → Multiplier: 2

Updated matrix U:

\( U_1 = \begin{bmatrix} 2 & 4 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & -4 & -7 & -6 \\ 0 & 1 & -8 & 4 \end{bmatrix} \)

Partial L matrix:

\( L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \end{bmatrix} \)

Step 2: Second Column Elimination

  • \( R_3 \leftarrow R_3 + 4 \cdot R_2 \) → Multiplier: -4
  • \( R_4 \leftarrow R_4 - 1 \cdot R_2 \) → Multiplier: 1

Updated matrix U:

\( U_2 = \begin{bmatrix} 2 & 4 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & -9 & 2 \end{bmatrix} \)

Updated L matrix:

\( L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & -4 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \)

Step 3: Third Column Elimination

  • \( R_4 \leftarrow R_4 - 3 \cdot R_3 \) → Multiplier: 3

Final matrix U:

\( U = \begin{bmatrix} 2 & 4 & 3 & 5 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & -3 & 2 \\ 0 & 0 & 0 & -4 \end{bmatrix} \)

Final L matrix:

\( L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 3 & -4 & 1 & 0 \\ 2 & 1 & 3 & 1 \end{bmatrix} \)