Understand various matrix operations, matrix decompositions, factorization and related operations
Eigenvalue Decomposition
Eigenvalue decomposition expresses a matrix as a product of its eigenvectors and eigenvalues, enabling diagonalization and simplifying the analysis of matrix powers and system stability.
Let’s assume a square matrix \( A \).
The characteristic equation is:
where \( I \) is the identity matrix and \( \lambda \) are eigenvalues.
For eigenvalue \( \lambda = \lambda_1 \), the corresponding eigenvector \( x \) satisfies:
Let \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \). The eigenvalue decomposition of a square matrix \( A \) is given by:
\[ A = P \Lambda P^{-1} \]
Where:
- \( \Lambda \) is a diagonal matrix of eigenvalues
- \( P \) is a matrix whose columns are the eigenvectors corresponding to the eigenvalues
Step 1: Find the eigenvalues
We solve the characteristic equation \( \det(A - \lambda I) = 0 \).
\[ \begin{vmatrix} 1 - \lambda & 2 \\ 3 & 4 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda) - 6 = \lambda^2 - 5\lambda - 2 \]
Solving: \( \lambda = \frac{5 \pm \sqrt{33}}{2} \approx -0.372, \ 5.372 \)
Step 2: Find eigenvectors
For each eigenvalue \( \lambda \), solve \( (A - \lambda I)\vec{v} = 0 \) to get the corresponding eigenvector \( \vec{v} \).
For example, for \( \lambda_1 = 5.372 \), the corresponding eigenvector is approximately:
\[ \vec{v}_1 = \begin{bmatrix} -0.416 \\ -0.909 \end{bmatrix} \]
And for \( \lambda_2 = -0.372 \):
\[ \vec{v}_2 = \begin{bmatrix} -0.825 \\ 0.566 \end{bmatrix} \]
Step 3: Construct the decomposition
Using:
\[ P = \begin{bmatrix} -0.416 & -0.825 \\ -0.909 & 0.566 \end{bmatrix}, \quad \Lambda = \begin{bmatrix} 5.372 & 0 \\ 0 & -0.372 \end{bmatrix} \]
You can verify that \( A = P \Lambda P^{-1} \) using matrix multiplication.