\( p(\boldsymbol{y}|\boldsymbol{x})=\frac{1}{(\pi N_0)^{n/2}}e^{-\frac{(||\boldsymbol{y}-\boldsymbol{x}||^2)}{N_0}}\)
The estimate of the transmitted codeword is given by:\(\hat{\boldsymbol{x}}=arg_{\boldsymbol{x}\in{\cal C}}\max\frac{1}{(\pi N_0)^{n/2}}e^{-\frac{(||\boldsymbol{y}-\boldsymbol{x}||^2)}{N_0}}=arg_{\boldsymbol{x}\in{\cal C}}\max\langle\boldsymbol{y},\boldsymbol{x}\rangle\)
Consider the given parity check catrix : \(H\) =
Check if the parity check matrix is non-sparse, a sparse but irregular or a sparse but regular matrix and check one of the options below.
Does the above parity check matrix define a LDPC code?