Representation of Integers and their Arithmetic

Suresh Purini, I1I'T-H

What does the 8-bit string 11100000 represent? It could mean 224, -96, -31 and -32 when treated
as an unsigned integer, sign-magnitude integer, one’s complement integer and two’s complement
integer respectively. Or it could be mean the ASCII character . So what a bit string means
depends on the semantics or the definition we associate with it. In this write-up we shall study
binary representation of unsigned and signed integers which is a primitive data structure supported
by all modern processors.

1 Unsigned Integers

Consider the bijective function B2U,, : {0,1}* — {0,--- ,2* — 1} which maps w-bit binary strings
to unsigned integers as follows.

w—1
B2U,(b) = > b2'
=0

For example B2U4(0101) = 5 and B2U4(1101) = 13. You can observe that the function B2U,,
and its inverse are efficiently computable. In other words, we can easily compute the binary
representation of an unsigned integer in the range of the function making it a viable representation.

In C-language all variables of type unsigned integers are allocated a fixed number of bytes (or
equivalent number of bits) for storage which is typically 4 bytes or 32 bits. You can check this by
running the following C-program on your machine.

#include <stdio.h>
main()
{
printf("Size of Unsigned Integer: %d\n", sizeof(unsigned int));

}

Having represented unsigned integers in binary, we would like to figure out how to perform addition
and multiplication operations. Let us just focus on addition operation in our discussion and the
relevant ideas can be applied to multiplication operations too with suitable modifications. We
presume that you know the algorithm to add two binary numbers as illustrated in the Figure 1
1. We also know the analogous algorithm for addition in the unsigned integer domain. Now
the beauty of the mapping function B2U,, is that it shows the isomorphic structure between the
unsigned integers and their binary representation with respect to the addition operation (and also
multiplication operation). To elaborate more on this idea let us define the w-bit addition of two
numbers as the regular binary addition except that we ignore the carry-out bit from the MSB if at
all there is one. With this definition, when we add two w-bit numbers, the result is always a w-bit
number. The key claim here is whether we do addition of two unsigned integers in decimal notation

'Recall the w-bit ripple carry adder circuit.



Carry Out Bits
|

0 1 1 1
0110 0110 0110 0110 0110
1111 1111 1111 1111 1111
1~ 01 101 ~0101

Figure 1: Addition of binary numbers

Row No | 3-bit Binary | Unsigned Integer
Ry 000 0
Ry 001 1
Ry 010 2
R3 011 3
Ry 100 4
Rs 101 5
Rg 110 6
Ry 111 7

Table 1: Isomorphic structure of 3-bit binary numbers and their unsigned intrepetation

which we are familiar with or we do addition of their respective w-bit binary representations, the
net result is just the same except for the difference in their notational representation. This claim
is true so far as the result of the addition operation does cause an overflow, in other words the
result would fit into w-bits. Consider the following Table 1 with three columns. If we want to
add 1 and 4, whether we carry out addition in column 2 or in column 3, the respective results
would fall in Row 5. However if we want to add 4 and 5, then the result wouldn’t fall in the range
in the column 2 and the result in the column 3 would fall in Row-1 (recall how w-bit addition
is defined). It can be observed though that there is isomorphism between (mod 2*) addition of
decimal numbers and w-bit addition of binary numbers without worrying about overflow at all
since it would never happen in modular arithmetic. It has to be noted here that we can use
any other function (preferably bijective) from the w-bit strings to unsigned numbers and create
a isomorphism between the decimal domain and the binary domain by appropriately defining the
addition operations in the binary domain. We leave it to you to ponder whether such an alternate
function has any utility. It is easy to note here that the addition of two w-bit unsigned numbers
would cause an overflow if and only if the carry-out bit is 1.

2 Signed Integers

The following are three different ways of representing signed integers.

1. Sign-Magnitude Representation. The mapping function here is:

B2S,(by—1...bg) = (—1)=1 % (2972 5 byy_p + ... + 20 x by)



Row No | 3-bit String | Sign-Magnitue | 1’s Complement | 2’s Complement
Ry 000 0 0 0
Ry 001 1 1 1
Ry 010 2 2 2
R3 011 3 3 3
Ry 100 -0 -3 -4
Rs 101 -1 -2 -3
Rg 110 -2 -1 -2
Ry 111 -3 0 -1

Table 2: Isomorphic structure of 3-bit binary numbers and 2’s complement signed integers

2. 1’s Complement Representation. The mapping function here is:

B20,y(by—1...bg) = —by_1 % (2°7L = 1) + by_o % 2972 + .. + b x 2

3. 2’s Complement Representation. The mapping function here is:

B2T,,(by_1...bg) = —byy_1 % 2% 7L £ by o % 2972 4 .. 4 by % 2°

Pretty much all systems use 2’s complement representation for signed integers. We shall see the
rationale behind such a choice in the following discussion. First you can verfiy that among the
3 mapping functions only the B2T,, function corresponding to 2’s complement representation is
bijective. Let us stick to our definition of w-bit addition of binary numbers and we shall see that
there is an isomorphic structure between signed integers and their 2’s complement representation
with respect to addition. It has to be noted that this isomorphism holds if and only if the results of
addition does not cause overflow or underflow. Sign-magnitude and 1’s complement representation
of signed integers doesn’t carry this isomorphic structure with respect to the canonical binary
addition rules. It is worth noting that we can create an isomorphic structure even with these
representations by suitable modifying the rules of binary addition. To understand these ideas
consider the Table 2. For example if we add Row3 with Row4, the resulting binary number is 111
which lies in Row 7, whereas if we perform the addition on Sign-Magnitude numbers in Column
2, we get a value in Row 3 indicating the lack of isomorphic structure with respect to addition
between the binary and sign-magnitude representation of numbers. It can be verified that there
is no isomorphic structure between binary and one’s complement representation of numbers by
adding elements in Row 5 and Row 6. In binary addition we get an element in Row 3, whereas in
the one’s complement representation we get an element in Row 4 in Column 3. However it can be
verified that as long as there is no overflow there is a perfect isomorphism with respect to addition
between binary and two’s complement representation of numbers.

3 Unsigned versus 2’s Complement Addition

From the previous discussion it could have been noted that the rules of binary addition for both
Unsigned and 2’s Complement Addition is exactly the same. It means that we could use the same
k-bit ripple carry to add any 2 unsigned or 2’s complement numbers and we need not tell the k-bit
ripple adder whether we are doing signed arithmetic or unsigned arithmetic. To illustrate this point
further let us that I have a k-bit adder circuit with me, some of the students in the class want to



do 2’s complement addition and some of you may want to perform unsigned addition over k-bit
numbers using my k-bit adder circuit. But you don’t want to reveal me whether you are performing
signed or unsigned arithmetic for whatever reasons you have. It is no big deal for my k-bit adder
circuit as the rules of addition remains the same for both signed and unsigned numbers. However
there is a catch here. The catch is that overflow conditions for signed and unsigned arithmetic are
different.



