Earthquake Engineering Research Centre International Institute of Information Technology Gachibowli, Hyderabad – 500 032, India

Theory:

Free vibration is initiated by disturbing the system from its static equilibrium position by imparting the mass some displacement u(0) and velocity u'(0) at time t=0.

There are two cases in free vibration

- 1. undamped free vibration
- 2. damped free vibration

Undamped free vibration:

The governing equation for undamped free vibration is

$$m\ddot{u} + ku = 0$$

where.

m = mass, u'' = acceleration, k = stiffness, u = displacement.

The solution to homogeneous equation is:

$$u(t) = u(0) \cos \omega_n t + \frac{\dot{u}(0)}{\omega_n} \sin \omega_n t$$

where,

u(0) = initial displacement, u'(0) = initial velocity.

Here in this solution we can observe that the system will vibrate only if initial displacement and/or initial velocity is given.

Damped free vibration :

The governing free vibration of the SDF system with damping

$$m\ddot{u} + c\dot{u} + ku = 0$$

where,

 $c = damping \ coefficient$, $u' = velocity \ coefficient$

$$\ddot{u} + 2\varsigma \omega_n \dot{u} + \omega_n^2 u = 0$$

where ω_n = natural frequency