Heat transfer by forced convection

Objective

To determine the convective heat transfer coefficient and the rate of heat transfer by forced convection for flow of air inside a horizontal pipe.

apparatus

Dp - 40mm


Do - 20mm


specimen dimension - 23x300 mm

Set voltage

Q(w) 10
T1(°C) 10
T2(°C) 10
T3(°C) 10
T4(°C) 10
T5(°C) 10
T6(°C) 27
T7(°C) 28

Temperature Gradient

$$Properties \space of \space air \space at \space T_m$$

$$T_m = \frac{(T_s + T_a)}{2} K$$

$$T_s = \frac{(T_2+T_3+T_4+T_5+T_6)}{5} K$$

$$T_a = 303 K$$

$$Mass \space density \space of \space air = 1.12 kg/m^3$$

Pressure drop

$$h_a = \frac{\rho m. hm}{\rho a}m$$

$$\rho m(mercury) = 13600 kg/m^3$$

$$Manometer \space Reading \space hm = 25mm$$

$$h_a = $$

$$m$$

Vair at orifice,

$$V_o = \frac{C_d. (2.g.h_a)^{1/2}}{(1-(d_0/d_p)^4)^{1/2}} m/s$$

$$C_d= 0.6$$

$$V_o = $$

$$m/s$$

Vair in the tube
$$V_a = \frac{V_o d_o^2}{d_s^2}m/s$$

$$V_a = $$

$$m/s$$

Reynolds number

$$R_e = \frac{V_a.d_s}{\gamma}$$

$$\gamma = 1.696*10^{-5}$$

$$R_e = $$

Nusselt Number

$$N_u = 0.023 (R_e)^{0.8}(P_r)^n$$

$$n = 0.4\space for\space heating\space of\space fluid$$

$$n = 0.3\space for\space cooling\space of\space fluid$$

$$P_r=0.699$$

$$Nu = $$

Heat transfer coefficient

$$h = \frac{N_u.k}{D_s}W/m^2K$$

$$k = 0.02756$$

$$h = $$

$$W/m^2K$$

Heat transfer rate

$$Q_c = \frac{h.A}{(T_s - T_a)}W$$

$$A = \pi.D_s.L$$

$$Qc = $$

$$W$$