Given \(\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}\), a probability measure where \(P(\{\omega_1\}) = 0.2\) and \(P(\{\omega_2,\omega_3,\omega_4\}) = 0.8\), and a Random Variable \(X\) defined as: \(X(\omega_1) = 1\), \(X(\omega_2) = 2\), \(X(\omega_3) = 2\), \(X(\omega_4) = 2\).
1. Find the inverse image, which is the set \(\{\omega \in \Omega : X(\omega) \le c\}\)
2. Now, find \(F_X(c) = P(\{\omega \in \Omega : X(\omega) \le c\})\)