
Experiment-8

 Autoencoders for Representation Learning

Aim:

To study and implement autoencoders for unsupervised representation learning by training both a basic

and a denoising autoencoder on the Fashion-MNIST dataset (mapping noisy inputs to clean outputs),

and to analyze unsupervised compression and reconstruction performance through reconstruction grids

and a 2-D projection of the learned latent space.

Theory:

Introduction to Autoencoders

Autoencoders are a type of neural network used for unsupervised learning of efficient data

representations. Unlike supervised learning methods that require labelled data, autoencoders learn

useful features by attempting to reconstruct their input. The main idea is to compress the input into a

lower-dimensional representation and then reconstruct the original input from this compressed form

using an encoder–decoder architecture.

“High-dimensional data can be converted to low-dimensional codes by training a multilayer neural

network with a small central layer to reconstruct high-dimensional input vectors."

 - Hinton & Salakhutdinov, Science, 2006

An autoencoder consists of two main parts:

● Encoder: Compresses the input into a latent-space representation (bottleneck layer)

● Decoder: Reconstructs the input from the latent representation

The network is trained to minimise the difference between the input and its reconstruction,

forcing it to learn the most important features of the data.

Types of Autoencoders:

Basic Autoencoder:

A basic autoencoder learns to compress and reconstruct clean input data. The input image is passed

through the encoder, compressed into a bottleneck (latent) representation, and then reconstructed by

the decoder.

The bottleneck layer forces the network to learn a compressed representation that captures the

essential features of the input while discarding redundant information.

Denoising Autoencoder:

“A denoising autoencoder is trained to reconstruct a clean 'repaired' input from a corrupted version of

it."

 - Vincent et al., ICML 2008

A denoising autoencoder is trained to reconstruct a clean “repaired” input from a corrupted version of

it. In this case, noise is deliberately added to the input image, and the corrupted image is then fed into

the autoencoder. The decoder attempts to reconstruct the original clean image rather than the noisy

input.

Figure 1- Denoising autoencoder

(Source: Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.)

A denoising autoencoder is trained to map a corrupted data point x’ back to the original data point x as

shown in Figure 1. We illustrate training examples x as red crosses lying near a low-dimensional

manifold illustrated with the bold black line. We illustrate the corruption process C (x’ | x) with a gray

circle of equiprobable corruption. A gray arrow demonstrates how one training example is transformed

into one sample from this corruption process.

The training process for a denoising autoencoder can be written as:

● Input: 𝑥′ = 𝑥 + 𝑛 ⋅ 𝑥 where n is random noise

● Target: 𝑥 (clean image)

● Loss: 𝐿 (𝑥,  𝑔(𝑓(𝑥′)))

The reconstruction loss is computed by comparing the decoder’s output with the original clean

image. This forces the network to learn features that are resilient to noise and capture the

underlying structure of the data.

Latent Space Representation:

Latent space (bottleneck layer) is the compressed representation learned by the encoder. This

compression enables autoencoders to learn hierarchical representations of data.

For visualisation purposes, a 2-dimensional latent space is often used. When the latent dimension is 2,

the encoded representations of input images can be directly plotted to observe how the autoencoder

organises different patterns in the data.

 Similar fashion items tend to cluster together in the learned latent space, indicating that the

autoencoder has learned meaningful and discriminative representations.

Figure 2- Reconstructed Image After Noise Removal

(Source: Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.)

The amount of vertical translation defines a coordinate along a one-dimensional manifold that traces a

curved path through image space. The above plot as shown in Figure 2 shows a few points along this

manifold. For visualization, we have projected the manifold into two-dimensional space using PCA. An n-

dimensional manifold has an n-dimensional tangent plane at every point. This tangent plane touches the

manifold exactly at that point and is oriented parallel to the surface at that point.

Merits of Autoencoders

● Unsupervised Learning: No labelled data required for training

● Dimensionality Reduction: Learns compact representations of high-dimensional data

● Noise Reduction: Denoising autoencoders can remove noise from corrupted data

● Feature Learning: Automatically discovers useful features without manual engineering

● Data Compression: Can be used for efficient data storage and transmission

Demerits of Autoencoders

● Reconstruction Quality: May not perfectly reconstruct complex images

● Training Complexity: Requires careful tuning of architecture and hyperparameters

● Computational Cost: Deep autoencoders require significant training time

● Task-Specific: Representations learned may not transfer well to other tasks

1

Code & Result:

[]:

[]:

/kaggle/input/fashionmnist/t10k-labels-idx1-ubyte

/kaggle/input/fashionmnist/t10k-images-idx3-ubyte
/kaggle/input/fashionmnist/fashion-mnist_test.csv

/kaggle/input/fashionmnist/fashion-mnist_train.csv
/kaggle/input/fashionmnist/train-labels-idx1-ubyte

/kaggle/input/fashionmnist/train-images-idx3-ubyte

1 IMPORT LIBRARIES

==
IMPORT LIBRARIES
==
import torch

import torch.nn as nn

This Python 3 environment comes with many helpful analytics libraries␣
𝗌installed

It is defined by the kaggle/python Docker image: https://github.com/kaggle/
𝗌docker-python

For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

Input data files are available in the read-only "../input/" directory

For example, running this (by clicking run or pressing Shift+Enter) will list␣
𝗌all files under the input directory

import os

for dirname, _, filenames in os.walk('/kaggle/input'):

for filename in filenames:
print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that␣
𝗌gets preserved as output when you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved␣
𝗌outside of the current session

2

2 ADD DATA

[]:

[]:

Files copied successfully

3 SHOW DATA

import numpy as np

import matplotlib.pyplot as plt
import numpy as np

Define class names for FashionMNIST

classes = [

'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'

]

def display_one_from_each_class(dataset):
found_classes = {}

idx = 0

Loop until we find one of each (0-9)

import os
import shutil

base = "/kaggle/working/FashionMNIST/raw"
os.makedirs(base, exist_ok=True)

src = "/kaggle/input/fashionmnist"

files = [

"train-images-idx3-ubyte",
"train-labels-idx1-ubyte",
"t10k-images-idx3-ubyte",

"t10k-labels-idx1-ubyte"

]

for f in files:

shutil.copy(os.path.join(src, f), os.path.join(base, f))

print("Files copied successfully")

3

[]:

while len(found_classes) < 10:
img, label = dataset[idx]

if label not in found_classes:
found_classes[label] = img

idx += 1

Plotting

plt.figure(figsize=(15, 5))

for label, img in sorted(found_classes.items()):
plt.subplot(2, 5, label + 1)
Convert tensor to numpy and remove channel dim for grayscale

plt.imshow(img.squeeze(), cmap='gray')

plt.title(classes[label])

plt.axis('off')

plt.tight_layout()
plt.show()

Execute the function

display_one_from_each_class(train_data)

from torchvision import datasets, transforms

from torch.utils.data import DataLoader

transform = transforms.ToTensor()

train_data = datasets.FashionMNIST(
root="/kaggle/working",
train=True,

download=False,
transform=transform

)

4

4 AUTOENCODER MODEL

[]:

test_data = datasets.FashionMNIST(
root="/kaggle/working",

train=False,

download=False,
transform=transform

)

train_loader = DataLoader(train_data, batch_size=128, shuffle=True)
test_loader = DataLoader(test_data, batch_size=128, shuffle=False)

==
Architecture: Deeper network with BatchNorm, Dropout, and 2D latent space
Progression: 784 -> 512 -> 256 -> 128 -> 64 -> 32 -> 16 -> 8 -> 4 -> 2
==

class Autoencoder(nn.Module):

def init (self):

super(). init ()

Deeper encoder: Compressing from 784 down to 2

self.encoder = nn.Sequential(

nn.Flatten(),
nn.Linear(784, 512),

nn.BatchNorm1d(512),
nn.ReLU(),

nn.Dropout(0.1),

nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),

nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.ReLU(),

nn.Linear(128, 64),
nn.BatchNorm1d(64),

nn.ReLU(),

nn.Linear(64, 32),
nn.BatchNorm1d(32),

nn.ReLU(),

nn.Linear(32, 16),
nn.BatchNorm1d(16),

5

nn.ReLU(),

nn.Linear(16, 8),
nn.BatchNorm1d(8),

nn.ReLU(),

nn.Linear(8, 4),
nn.BatchNorm1d(4),

nn.ReLU(),

nn.Linear(4, 2) # Latent space (2D for visualization)

)

Deeper decoder: Reconstructing from 2 back to 784

self.decoder = nn.Sequential(

nn.Linear(2, 4),
nn.BatchNorm1d(4),

nn.ReLU(),

nn.Linear(4, 8),
nn.BatchNorm1d(8),

nn.ReLU(),

nn.Linear(8, 16),
nn.BatchNorm1d(16),
nn.ReLU(),

nn.Linear(16, 32),
nn.BatchNorm1d(32),
nn.ReLU(),

nn.Linear(32, 64),

nn.BatchNorm1d(64),
nn.ReLU(),

nn.Linear(64, 128),
nn.BatchNorm1d(128),

nn.ReLU(),

nn.Linear(128, 256),
nn.BatchNorm1d(256),

nn.ReLU(),

nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(),

6

5 TRAINING SETUP

[]:

6 NOISE ADDITION FUNCTION

[]:

nn.Linear(512, 784),

nn.Sigmoid() # Use Sigmoid for pixel values between [0, 1]

)

def forward(self, x):

z = self.encoder(x)
out = self.decoder(z)
Reshape output back to image dimensions if necessary for your loss␣

𝗌function

out = out.view(-1, 1, 28, 28)

return out, z

==
NOISE ADDITION FUNCTION
Adds Gaussian noise to images for denoising task
Reduced noise factor (0.25 vs 0.4) for better reconstruction quality
==

def add_noise(x, noise_factor=0.25): # Reduced from 0.4 to 0.25

noisy = x + noise_factor * torch.randn_like(x)

return torch.clamp(noisy, 0., 1.)

==
SETUP TRAINING CONFIGURATION
Initialize model, loss functions, optimizer, and learning rate scheduler
==

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Autoencoder().to(device)

Use MSE + L1 loss for better detail preservation

criterion_mse = nn.MSELoss()

criterion_l1 = nn.L1Loss()

Improved optimizer with scheduler

optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-5)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(

optimizer, mode='min', factor=0.5, patience=5

)

7

[]:

7 TRAINING

==
TRAINING LOOP
Train for 100 epochs with combined MSE+L1 loss, gradient clipping, and
automatic best model checkpointing
==

epochs = 100 # Increased epochs

best_loss = float('inf')

print("Starting training...")

for epoch in range(epochs):
model.train()

total_loss = 0

for images, _ in train_loader:
images = images.to(device)
noisy = add_noise(images)

outputs, _ = model(noisy)

Combined loss for better quality

loss_mse = criterion_mse(outputs, images.view(images.size(0), -1))
loss_l1 = criterion_l1(outputs, images.view(images.size(0), -1))
loss = 0.7 * loss_mse + 0.3 * loss_l1

optimizer.zero_grad()
loss.backward()

Gradient clipping for stability

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)o

optimizer.step()
total_loss += loss.item()

avg_loss = total_loss / len(train_loader)
scheduler.step(avg_loss)

Save best model

if avg_loss < best_loss:

best_loss = avg_loss

torch.save(model.state_dict(), 'best_autoencoder.pth')

if (epoch + 1) % 5 == 0:

print(f"Epoch [{epoch+1}/{epochs}] Loss: {avg_loss:.4f}")

print(f"\nTraining completed! Best Loss: {best_loss:.4f}")

8

Starting training…

Epoch [5/100] Loss: 0.0542

[]:

Epoch [100/100] Loss: 0.0445

Training completed! Best Loss: 0.0445

8 VISUALIZATION 1: BASIC RECONSTRUCTION

==
VISUALIZATION 1: BASIC RECONSTRUCTION
Display original, noisy, and reconstructed images side-by-side
Shows 8 sample images from test set
==

model.eval()

images, _ = next(iter(test_loader))
images = images.to(device)

noisy = add_noise(images)

with torch.no_grad():
reconstructed, _ = model(noisy)

n = 8

plt.figure(figsize=(12, 5))

for i in range(n):
Original

plt.subplot(3, n, i+1)
plt.imshow(images[i].cpu().squeeze(), cmap='gray')
plt.axis('off')

if i == 0:

Epoch [10/100] Loss: 0.0520

Epoch [15/100] Loss: 0.0510
Epoch [20/100] Loss: 0.0487
Epoch [25/100] Loss: 0.0477
Epoch [30/100] Loss: 0.0496

Epoch [35/100] Loss: 0.0470
Epoch [40/100] Loss: 0.0482
Epoch [45/100] Loss: 0.0467
Epoch [50/100] Loss: 0.0461

Epoch [55/100] Loss: 0.0458
Epoch [60/100] Loss: 0.0457
Epoch [65/100] Loss: 0.0457
Epoch [70/100] Loss: 0.0448

Epoch [75/100] Loss: 0.0450
Epoch [80/100] Loss: 0.0448
Epoch [85/100] Loss: 0.0447
Epoch [90/100] Loss: 0.0445

Epoch [95/100] Loss: 0.0446

9

[]:

Reconstruction visualization saved as 'improved.png'

9 VISUALIZATION 2: ERROR MAPS

plt.title('Original', fontsize=10)

Noisy

plt.subplot(3, n, i+1+n)

plt.imshow(noisy[i].cpu().squeeze(), cmap='gray')
plt.axis('off')
if i == 0:

plt.title('Noisy', fontsize=10)

Reconstructed

plt.subplot(3, n, i+1+2*n)
plt.imshow(reconstructed[i].view(28,28).cpu(), cmap='gray')
plt.axis('off')
if i == 0:

plt.title('Reconstructed', fontsize=10)

plt.tight_layout()

plt.savefig('improved_reconstruction.png', dpi=150, bbox_inches='tight')
plt.show()

print("\nReconstruction visualization saved as 'improved.png'")

==
VISUALIZATION 2: ERROR MAPS

10

==

model.eval()

images, _ = next(iter(test_loader))
images = images.to(device)

noisy = add_noise(images)

with torch.no_grad():
reconstructed, _ = model(noisy)

reconstructed = reconstructed.view(-1, 1, 28, 28)
error = torch.abs(images - reconstructed)

plt.figure(figsize=(10, 4))

for i in range(6):
Original

plt.subplot(2, 6, i+1)
plt.imshow(images[i].cpu().squeeze(), cmap='gray')

plt.axis('off')
if i == 0:

plt.ylabel('Original', fontsize=10)

Error map

plt.subplot(2, 6, i+7)
plt.imshow(error[i].cpu().squeeze(), cmap='hot')

plt.axis('off')
if i == 0:

plt.ylabel('Error Map', fontsize=10)

plt.suptitle("Original Images vs Reconstruction Error Maps (Lower is Better)",␣

𝗌fontsize=12)

plt.tight_layout()

plt.savefig('error_maps.png', dpi=150, bbox_inches='tight')
plt.show()

11

[]:

10 VISUALIZATION 3: NOISE ROBUSTNESS TEST

==
VISUALIZATION 3: NOISE ROBUSTNESS TEST
Tests model performance at different noise levels (0.1 to 0.6)
Shows how well the model handles varying amounts of noise
==
import random

img_idx = random.randint(0, images.size(0) - 1)
noise_levels = [0.1, 0.25, 0.4, 0.6]

plt.figure(figsize=(12, 8))

for i, nf in enumerate(noise_levels):

noisy_test = add_noise(images, nf)
with torch.no_grad():

recon, _ = model(noisy_test)

Original

plt.subplot(len(noise_levels), 3, i*3 + 1)
plt.imshow(images[img_idx].cpu().squeeze(), cmap='gray')

plt.axis('off')
if i == 0:

plt.title('Original', fontsize=10)
plt.ylabel(f'Noise={nf}', fontsize=9)

Noisy

plt.subplot(len(noise_levels), 3, i*3 + 2)

plt.imshow(noisy_test[img_idx].cpu().squeeze(), cmap='gray')
plt.axis('off')
if i == 0:

plt.title('Noisy Input', fontsize=10)

Reconstructed

plt.subplot(len(noise_levels), 3, i*3 + 3)
plt.imshow(recon[img_idx].view(28,28).cpu(), cmap='gray')

plt.axis('off')
if i == 0:

plt.title('Reconstructed', fontsize=10)

plt.suptitle('Denoising Performance at Different Noise Levels', fontsize=12)
plt.tight_layout()

plt.savefig('noise_comparison.png', dpi=150, bbox_inches='tight')
plt.show()

12

11 VISUALIZATION 4: LATENT SPACE PROJECTION

[]: # ==
VISUALIZATION 4: LATENT SPACE PROJECTION
2D visualization of the NATIVE 2D latent space showing class clusters
Each color represents a different FashionMNIST class
==

model.eval()
latents = []
labels = []

with torch.no_grad():

for images, lbls in test_loader:

images = images.to(device)
Your model returns: (reconstruction, latent_z)

13

_, z = model(images)
latents.append(z.cpu())

labels.append(lbls)

Concatenate all batches into single arrays

latents = torch.cat(latents).numpy()

labels = torch.cat(labels).numpy()

from matplotlib.lines import Line2D

class_names = [

"T-shirt/top", "Trouser", "Pullover", "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"

]

plt.figure(figsize=(12, 10))
Since latents is already (N, 2), we use index 0 and 1 directly

scatter = plt.scatter(
latents[:, 0],

latents[:, 1],
c=labels,
cmap='tab10',
s=5, # Increased size slightly for better visibility
alpha=0.7, # Adjusted alpha for overlap
edgecolors='none'

)

plt.xlabel("Latent Coordinate X", fontsize=11)
plt.ylabel("Latent Coordinate Y", fontsize=11)

plt.title("2D Latent Space Projection (Native Bottleneck)", fontsize=14)

Create custom legend

legend_elements = [

Line2D([0], [0], marker='o', color='w',

label=f"{i}: {class_names[i]}",
markerfacecolor=scatter.cmap(scatter.norm(i)),
markersize=10)

for i in range(10)

]

plt.legend(handles=legend_elements, title="Fashion Categories",
loc="upper right", fontsize=9, ncol=2, frameon=True)

plt.grid(True, linestyle='--', alpha=0.5)
plt.tight_layout()

plt.savefig('latent_space_2d.png', dpi=150, bbox_inches='tight')
plt.show()

14

[]: # ==
QUANTITATIVE EVALUATION
==

model.eval()

total_mse = total_ssim = total_psnr = total_samples = 0

def calculate_ssim(img1, img2):

C1, C2 = 0.01 ** 2, 0.03 ** 2

mu1, mu2 = img1.mean(), img2.mean()
sigma1_sq = ((img1 - mu1) ** 2).mean()
sigma2_sq = ((img2 - mu2) ** 2).mean()
sigma12 = ((img1 - mu1) * (img2 - mu2)).mean()
return (((2 * mu1 * mu2 + C1) * (2 * sigma12 + C2)) /

((mu1 ** 2 + mu2 ** 2 + C1) * (sigma1_sq + sigma2_sq + C2))).item()

with torch.no_grad():

for images, _ in test_loader:
images = images.to(device)

15

MSE: 0.026800 | PSNR: 16.33 dB | SSIM: 0.8210

noisy = add_noise(images)
outputs, _ = model(noisy)

outputs = outputs.view_as(images) # Reshape to match images

mse = ((outputs - images) ** 2).mean(dim=[1, 2, 3])
total_mse += mse.sum().item()
total_psnr += sum(20 * torch.log10(1.0 / torch.sqrt(m)) for m in mse).

𝗌item()

total_ssim += sum(calculate_ssim(images[i].squeeze(), outputs[i].

𝗌squeeze())

for i in range(images.size(0)))
total_samples += images.size(0)

print(f"\nMSE: {total_mse/total_samples:.6f} | PSNR: {total_psnr/total_samples:.

𝗌2f} dB | SSIM: {total_ssim/total_samples:.4f}")

	Experiment-8
	Introduction to Autoencoders
	Autoencoders are a type of neural network used for unsupervised learning of efficient data representations. Unlike supervised learning methods that require labelled data, autoencoders learn useful features by attempting to reconstruct their input. The...
	Types of Autoencoders:
	Latent Space Representation:
	Merits of Autoencoders
	Demerits of Autoencoders

	1 IMPORT LIBRARIES
	3 SHOW DATA
	4 AUTOENCODER MODEL
	5 TRAINING SETUP
	6 NOISE ADDITION FUNCTION
	7 TRAINING
	8 VISUALIZATION 1: BASIC RECONSTRUCTION
	9 VISUALIZATION 2: ERROR MAPS
	10 VISUALIZATION 3: NOISE ROBUSTNESS TEST
	import random

	11 VISUALIZATION 4: LATENT SPACE PROJECTION
	from matplotlib.lines import Line2D

