Experiment-8

Autoencoders for Representation Learning

Aim:

To study and implement autoencoders for unsupervised representation learning by training both a basic
and a denoising autoencoder on the Fashion-MNIST dataset (mapping noisy inputs to clean outputs),
and to analyze unsupervised compression and reconstruction performance through reconstruction grids
and a 2-D projection of the learned latent space.

Theory:
Introduction to Autoencoders

Autoencoders are a type of neural network used for unsupervised learning of efficient data
representations. Unlike supervised learning methods that require labelled data, autoencoders learn
useful features by attempting to reconstruct their input. The main idea is to compress the inputinto a
lower-dimensional representation and then reconstruct the original input from this compressed form
using an encoder—decoder architecture.

“High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors."
- Hinton & Salakhutdinov, Science, 2006

An autoencoder consists of two main parts:

Encoder: Compresses the input into a latent-space representation (bottleneck layer)
e Decoder: Reconstructs the input from the latent representation

The network is trained to minimise the difference between the input and its reconstruction,
forcing it to learn the most important features of the data.

Types of Autoencoders:
Basic Autoencoder:

A basic autoencoder learns to compress and reconstruct clean input data. The input image is passed
through the encoder, compressed into a bottleneck (latent) representation, and then reconstructed by
the decoder.

The bottleneck layer forces the network to learn a compressed representation that captures the
essential features of the input while discarding redundant information.

Denoising Autoencoder:

“A denoising autoencoder is trained to reconstruct a clean 'repaired’ input from a corrupted version of
it."
- Vincent et al., ICML 2008

A denoising autoencoder is trained to reconstruct a clean “repaired” input from a corrupted version of
it. In this case, noise is deliberately added to the input image, and the corrupted image is then fed into
the autoencoder. The decoder attempts to reconstruct the original clean image rather than the noisy
input.

Figure 1- Denoising autoencoder

(Source: Deep Learning. lan Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.)

A denoising autoencoder is trained to map a corrupted data point x’ back to the original data point x as
shown in Figure 1. We illustrate training examples x as red crosses lying near a low-dimensional
manifold illustrated with the bold black line. We illustrate the corruption process C (x’ | x) with a gray
circle of equiprobable corruption. A gray arrow demonstrates how one training example is transformed
into one sample from this corruption process.

The training process for a denoising autoencoder can be written as:

e Input: x’ = x + n - x where n is random noise
e Target: x (clean image)

e loss: L (x, g(f(xl)))

The reconstruction loss is computed by comparing the decoder’s output with the original clean
image. This forces the network to learn features that are resilient to noise and capture the
underlying structure of the data.

Latent Space Representation:

Latent space (bottleneck layer) is the compressed representation learned by the encoder. This
compression enables autoencoders to learn hierarchical representations of data.

For visualisation purposes, a 2-dimensional latent space is often used. When the latent dimension is 2,
the encoded representations of input images can be directly plotted to observe how the autoencoder
organises different patterns in the data.

Similar fashion items tend to cluster together in the learned latent space, indicating that the
autoencoder has learned meaningful and discriminative representations.

Figure 2- Reconstructed Image After Noise Removal

(Source: Deep Learning. lan Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.)

The amount of vertical translation defines a coordinate along a one-dimensional manifold that traces a
curved path through image space. The above plot as shown in Figure 2 shows a few points along this
manifold. For visualization, we have projected the manifold into two-dimensional space using PCA. An n-
dimensional manifold has an n-dimensional tangent plane at every point. This tangent plane touches the
manifold exactly at that point and is oriented parallel to the surface at that point.

Merits of Autoencoders

® Unsupervised Learning: No labelled data required for training
e Dimensionality Reduction: Learns compact representations of high-dimensional data
o Noise Reduction: Denoising autoencoders can remove noise from corrupted data

Feature Learning: Automatically discovers useful features without manual engineering
Data Compression: Can be used for efficient data storage and transmission

Demerits of Autoencoders

Reconstruction Quality: May not perfectly reconstruct complex images

Training Complexity: Requires careful tuning of architecture and hyperparameters
Computational Cost: Deep autoencoders require significant training time
Task-Specific: Representations learned may not transfer well to other tasks

Code & Result:

[1:

This Python 3 environment comes with many helpful analytics libraries,,
installed

It is defined by the kaggle/python Docker image: https://github.com/kaggle/
docker-python

For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file 1/0 (e.g. pd.read_csv)

Input data files are available in the read-only "./input/" directory
For example, running this (by clicking run or pressing Shift+Enter) will list_
all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input’):
for filename in filenames:
print(os.path.join(dirname, filename))

You can write up to 20GB to the current directory (/kaggle/working/) that,
gets preserved as output when you create a version using "Save & Run All"

You can also write temporary files to /kaggle/temp/, but they won't be saved.,
outside of the current session

/kaggle/input/fashionmnist/t10k-labels-idx1-ubyte
/kaggle/input/fashionmnist/t10k-images-idx3-ubyte
/kaggle/input/fashionmnist/fashion-mnist_test.csv
/kaggle/input/fashionmnist/fashion-mnist_train.csv
/kaggle/input/fashionmnist/train-labels-idx1-ubyte
/kaggle/input/fashionmnist/train-images-idx3-ubyte

1 IMPORT LIBRARIES

import torch
import torch.nn as nn

[1:

[1:

import torch.optim as optim

from torchvision import datasets, transforms

from torch.utils.data import DatalLoader
import matplotlib.pyplot as plt

import numpy as np

2 ADD DATA

import os
import shutil

base = "/kaggle/working/FashionMNIST /raw"
os.makedirs(base, exist_ok=True)

src = "/kaggle/input/fashionmnist"

files = [
"train-images-idx3-ubyte",
"train-labels-idx1-ubyte",
"t10k-images-idx3-ubyte",
"t10k-labels-idx1-ubyte"

1

for f in files:
shutil.copy(os.path.join(src, f), os.path.join(base, f))

print("Files copied successfully")
Files copied successfully

3 SHOW DATA

import matplotlib.pyplot as plt
import numpy as np

Define class names for FashionMNIST

classes = |
'"T-shirt/top’', 'Trouser', 'Pullover’, 'Dress’, 'Coat’,
'Sandal’, 'Shirt', 'Sneaker’, 'Bag’', 'Ankle boot'

1

def display_one_from_each_class(dataset):
found_classes = {}
idx = 0

Loop until we find one of each (0-9)

while len(found_classes) < 10:
img, label = dataset[idx]
if label not in found_classes:
found_classes[label] = img
idx +=1

Plotting

plt.figure(figsize=(15, 5))

for label, img in sorted(found_classes.items()):
plt.subplot(2, 5, label + 1)

Convert tensor to numpy and remove channel dim for grayscale
plt.imshow(img.squeeze(), cmap='gray’)
plt.title(classes[label])

plt.axis('off")

plt.tight_layout()
plt.show()

Execute the function
display_one_from_each_class(train_data)

T-shirt/top Trouser Pullover

1 Ll D

Sandal Shirt Sneaker

Ankle boot

[1: from torchvision import datasets, transforms
from torch.utils.data import DataLoader

transform = transforms.ToTensor()

train_data = datasets.FashionMNIST(
root="/kaggle/working",
train=True,
download=False,
transform=transform

test_data = datasets.FashionMNIST(
root="/kaggle/working",
train=False,
download=False,
transform=transform

)

train_loader = DatalLoader(train_data, batch_size=128, shuffle=True)
test_loader = DatalLoader(test_data, ioatch_size=128, shuffle=False)

4 AUTOENCODER MODEL

Architecture: Deeper network with BatchNorm, Dropout, and 2D latent space
Progression: 784 -> 512 -> 256 -> 128 -> 64 -> 32 -> 16 -> 8 -> 4 -> 2

class Autoencoder(nn.Module):
def __init_(self):
super()._init_(

Deeper encoder: Compressing from 784 down to 2

self.encoder = nn.Sequential(
nn.Flatten(),
nn.Linear(784, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.1),

nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),

nn.Linear(256, 128),
nn.BatchNorm1d(128),
nn.ReLU(),

nn.Linear(128, 64),
nn.BatchNorm1d(64),
nn.RelLU(),

nn.Linear(64, 32),
nn.BatchNorm1d(32),
nn.RelLU(),

nn.Linear(32, 16)
nn.BatchNorm1d(1 63,

nn.RelLU(),

nn.Linear(16, 8),
nn.BatchNorm1d(8),
nn.RelLU(),

nn.Linear(8, 4),
nn.BatchNorm1d(4),
nn.RelLU(),

nn.Linear(4, 2) # Latent space (2D for visualization)

)

Deeper decoder: Reconstructing from 2 back to 784

self.decoder = nn.Sequential(
nn.Linear(2, 4),
nn.BatchNorm1d(4),
nn.ReLU(),

nn.Linear(4, 8),
nn.BatchNorm1d(8),
nn.RelLU(),

nn.Linear(8, 16),
nn.BatchNorm1d(16),
nn.RelLU(),

nn.Linear(16, 32),
nn.BatchNorm1d(32),
nn.RelLU(),

nn.Linear(32, 64),
nn.BatchNorm1d(64),
nn.ReLU(),

nn.Linear(64, 128),
nn.BatchNorm1d(128),
nn.RelLU(),

nn.Linear(128, 256),
nn.BatchNorm1d(256),
nn.ReLU(),

nn.Linear(256, 512),
nn.BatchNorm1d(512),
nn.ReLU(),

nn.Linear(512, 784),
nn.Sigmoid() # Use Sigmoid for pixel values between [0, 1]

)

def forward(self, x):

z = self.encoder(x)

out = self.decoder(z)

Reshape output back to image dimensions if necessary for your loss,_,
function

out = outview(-1, 1, 28, 28)

return out, z

5 TRAINING SETUP

SETUP TRAINING CONFIGURATION
Initialize model, loss functions, optimizer, and learning rate scheduler

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Autoencoder().to(device)

Use MSE + L1 loss for better detail preservation

criterion_mse = nn.MSELoss()
criterion_I1 = nn.L1Loss()

Improved optimizer with scheduler

optimizer = torch.optim.AdamW(model.parameters(), Ir=0.001, weight_decay=1e-5)
scheduler = torch.optim.Ir_scheduler.ReduceLROnPlateau(
optimizer, mode="min’, factor=0.5, patience=5

)

6 NOISE ADDITION FUNCTION

NOISE ADDITION FUNCTION
Adds Gaussian noise to images for denoising task
Reduced noise factor (0.25 vs 0.4) for better reconstruction quality

def add_noise(x, noise_factor=0.25): # Reduced from 0.4 to 0.25
noisy = x + noise_factor * torch.randn_like(x)
return torch.clamp(noisy, 0., 1.)

~» TRAINING

TRAINING LOOP
Train for 100 epochs with combined MSE+L1 loss, gradient clipping, and
automatic best model checkpointing

epochs = 100 # Increased epochs
best_loss = float('inf")

print("Starting training...")
for epoch in range(epochs):
model.train()
total_loss = 0

for images, _ in train_loader:
images = images.to(device)
noisy = add_noise(images)

outputs, _ = model(noisy)

Combined loss for better quality

loss_mse = criterion_mse(outputs, images.view(images.size(0), -1))
loss_I1 = criterion_I1(outputs, images.view(images.size(0), -1))
loss = 0.7 * loss_mse + 0.3 * loss_I1

optimizer.zero_grad()
loss.backward()

Gradient clipping for stability
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)o

optimizer.step()
total_loss += loss.item()

avg_loss = total_loss / len(train_loader)
scheduler.step(avg_loss)

Save best model

if avg_loss < best_loss:
best_loss = avg_loss
torch.save(model.state_dict(), 'best_autoencoder.pth’)

if (epoch + 1) % 5 == 0:
print(f"Epoch [{epoch+1}/{epochs}] Loss: {avg_loss:.4f}")

print(f"\nTraining completed! Best Loss: {best_loss:.4f}")

Starting training...

Epoch [5/100] Loss: 0.0542
Epoch [10/100] Loss: 0.0520

Epoch [15/100] Loss: 0.0510
Epoch [20/100] Loss: 0.0487
Epoch [25/100] Loss: 0.0477
Epoch [30/100] Loss: 0.0496
Epoch [35/100] Loss: 0.0470
Epoch [40/100] Loss: 0.0482
Epoch [45/100] Loss: 0.0467
Epoch [50/100] Loss: 0.0461
Epoch [55/100] Loss: 0.0458
Epoch [60/100] Loss: 0.0457
Epoch [65/100] Loss: 0.0457
Epoch [70/100] Loss: 0.0448
Epoch [75/100] Loss: 0.0450
Epoch [80/100] Loss: 0.0448
Epoch [85/100] Loss: 0.0447
Epoch [90/100] Loss: 0.0445
Epoch [95/100] Loss: 0.0446

Epoch [100/100] Loss: 0.0445

Training completed! Best Loss: 0.0445

8 VISUALIZATION 1: BASIC RECONSTRUCTION

VISUALIZATION 1: BASIC RECONSTRUCTION
Display original, noisy, and reconstructed images side-by-side
Shows 8 sample images from test set

model.eval()

images, _ = next(iter(test_loader))
images = images.to(device)

noisy = add_noise(images)

with torch.no_grad():
reconstructed, _ = model(noisy)

n=2=38

plt.figure(figsize=(12, 5))

for i in range(n):
Original
plt.subplot(3, n, i+1)
plt.imshow(imageslil.cpu().squeeze(), cmap="'gray’)
plt.axis('off")
ifi ==

plt.title('Original’, fontsize=10)

Noisy
plt.subplot(3, n, i+1+n)
plt.imshow(noisy[i].cpu().squeeze(), cmap='gray’)
plt.axis('off")
ifi == O:

plt.title('Noisy', fontsize=10)

Reconstructed
plt.subplot(3, n, i+1+2%n)
plt.imshow(reconstructed[i].view(28,28).cpu(), cmap="'gray’)
plt.axis('off")
ifi == O:

plt.title('Reconstructed’, fontsize=10)

plt.tight_layout()

plt.savefig('improved_reconstruction.png’, dpi=150, bbox_inches="tight’)
plt.show()

print("\nReconstruction visualization saved as ‘improved.png')

Original

Reconstructed

atHHBTs

Reconstruction visualization saved as 'improved.png'

9 VISUALIZATION 2: ERROR MAPS

VISUALIZATION 2: ERROR MAPS
Heat maps showing pixel-wise reconstruction errors
Brighter areas = higher error, Darker areas = better reconstruction

model.eval()

images, _ = next(iter(test_loader))
images = images.to(device)

noisy = add_noise(images)

with torch.no_grad():
reconstructed, _ = model(noisy)

reconstructed = reconstructed.view(-1, 1, 28, 28)
error = torch.abs(images - reconstructed)

plt.figure(figsize=(10, 4))
for i in range(6):
Original
plt.subplot(2, 6, i+1)
plt.imshow(imagesli].cpu().squeeze(), cmap="'gray’)
plt.axis('off")
ifi == 0:
plt.ylabel('Original’, fontsize=10)

Error map
plt.subplot(2, 6, i+7)
plt.imshow(errorlil.cpu().squeeze(), cmap="hot’)
plt.axis('off")
ifi == 0:

plt.ylabel('"Error Map', fontsize=10)

plt.suptitle("Original Images vs Reconstruction Error Maps (Lower is Better)",.
fontsize=12)

plt.tight_layout()

plt.savefig('error_maps.png’, dpi=150, bbox_inches="tight’)

plt.show()

Original Images vs Reconstruction Error Maps (Lower is Better)

10

10 VISUALIZATION 3: NOISE ROBUSTNESS TEST

VISUALIZATION 3: NOISE ROBUSTNESS TEST
Tests model performance at different noise levels (0.1 to 0.6)
Shows how well the model handles varying amounts of noise

import random

img_idx = random.randint(0, images.size(0) - 1)
noise_levels = [0.1, 0.25, 0.4, 0.6]

plt.figure(figsize=(12, 8))
for i, nf in enumerate(noise_levels):
noisy_test = add_noise(images, nf)
with torch.no_grad():
recon, _ = model(noisy_test)

Original
plt.subplot(len(noise_levels), 3, i*3 + 1)
plt.imshow(images[img_idx].cpu().squeeze(), cmap="gray’)
plt.axis('off")
ifi == O:

plt.title('Original’, fontsize=10)
plt.ylabel(f'Noise={nf}', fontsize=9)

Noisy
plt.subplot(len(noise_levels), 3, i*3 + 2)
plt.imshow(noisy_test[img_idx].cpu().squeeze(), cmap="'gray’)
plt.axis('off")
ifi == 0O:

plt.title('Noisy Input’, fontsize=10)

Reconstructed
plt.subplot(len(noise_levels), 3, i*3 + 3)
plt.imshow(recon[img_idx].view(28,28).cpu(), cmap="'gray’)
plt.axis('off")
ifi == 0:

plt.title('Reconstructed’, fontsize=10)

plt.suptitle('Denoising Performance at Different Noise Levels', fontsize=12)
plt.tight_layout()

plt.savefig('noise_comparison.png', dpi=150, bbox_inches="tight’)

plt.show()

11

Denoising Performance at Different Noise Levels

Original NOiS}Ir Input Reconstructed
g
= =

111

VISUALIZATION 4: LATENT SPACE PROJECTION
2D visualization of the NATIVE 2D latent space showing class clusters
Each color represents a different FashionMNIST class

model.eval()
latents = []
labels = []

with torch.no_grad():

for images, Ibls in test_loader:
images = images.to(device)
Your model returns: (reconstruction, latent_z)

12

_, Z = model(images)
latents.append(z.cpu())
labels.append(lbls)

Concatenate all batches into single arrays

latents = torch.cat(latents).numpy()
labels = torch.cat(labels).numpy()

from matplotlib.lines import Line2D

class_names = [
"T-shirt/top", "Trouser", "Pullover”, "Dress", "Coat",
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot"

1

plt.figure(figsize=(12, 10))
Since latents is already (N, 2), we use index 0 and 1 directly
scatter = plt.scatter(
latents[:, 0],
latents[:, 1],
c=labels,
cmap="tab10’,
s=5, # Increased size slightly for better visibility
alpha=0.7, # Adjusted alpha for overlap
edgecolors="none'

)

plt.xlabel("Latent Coordinate X", fontsize=11)
plt.ylabel("Latent Coordinate Y", fontsize=11)
plt.title("2D Latent Space Projection (Native Bottleneck)", fontsize=14)

Create custom legend
legend_elements = [

Line2D([0], [0], marker='0', color="w',
label=f"{i}: {class_names]i]}",
markerfacecolor=scatter.cmap(scatter.norm(i)),
markersize=10)

for i in range(10)

1

plt.legend(handles=legend_elements, title="Fashion Categories",
loc="upper right", fontsize=9, ncol=2, frameon=True)

plt.grid(True, linestyle="--", alpha=0.5)

plt.tight_layout()

plt.savefig('latent_space_2d.png', dpi=150, bbox_inches="tight')
plt.show()

13

2D Latent Space Projection (Native Bottleneck)

Fashion Categories
141 . ® 0: T-shirt/top ® 5:sandal
: e s @ 1:Trouser @ 6: Shirt
. @® 2:pullover ® 7:Sneaker
@ 3:Dress 8: Bag
@® 4:Coat ® 9: Ankle boot
1.2 4
1.0 1
>
2 081
©
E
B
8
O
=
5
© 06 1
0.4 1
0.2 1
0.0 1
-0.8 -0.6 -0.4 —0‘.2 0.0 0.2 0.4 0.6
Latent Coordinate X
QUANTITATIVE EVALUATION
e S o S o S G S S S S S S S S S G G S e S S

model.eval()
total_mse = total_ssim = total_psnr = total_samples = 0

def calculate_ssim(img1, img2):
C1, C2 = 0.01 ** 2, 0.03 ** 2
mul, mu2 = imgl.mean(), img2.mean()
sigmal_sq = ((imgl - mul) ** 2).mean()
sigma2_sq = ((img2 - mu2) ** 2).mean()
sigmal2 = ((imgl - mul) * (img2 - mu2)).mean()
return (((2 * mul * mu2 + C1) * (2 * sigmal2 + C2)) /
((mul ** 2 + mu2 ** 2 + C1) * (sigmal_sq + sigma2_sq + C2))).item()

with torch.no_grad():

for images, _ in test_loader:
images = images.to(device)

14

noisy = add_noise(images)
outputs, _ = model(noisy)
outputs = outputs.view_as(images) # Reshape to match images

total_mse += mse.sum().item()
total_psnr += sum(20 * torch.log10(1.0 / torch.sqrt(m)) for m in mse).

item()
total_ssim += sum(calculate_ssim(imagesl[i].squeeze(), outputsli].

squeeze())
for i in range(images.size(0)))
total_samples += images.size(0)

print(f"\nMSE: {total_mse/total_samples:.6f} | PSNR: {total_psnr/total_samples:.
2f}y dB | SSIM: {total_ssim/total_samples:.4f}")

MSE: 0.026800 | PSNR: 16.33 dB | SSIM: 0.8210

15

	Experiment-8
	Introduction to Autoencoders
	Autoencoders are a type of neural network used for unsupervised learning of efficient data representations. Unlike supervised learning methods that require labelled data, autoencoders learn useful features by attempting to reconstruct their input. The...
	Types of Autoencoders:
	Latent Space Representation:
	Merits of Autoencoders
	Demerits of Autoencoders

	1 IMPORT LIBRARIES
	3 SHOW DATA
	4 AUTOENCODER MODEL
	5 TRAINING SETUP
	6 NOISE ADDITION FUNCTION
	7 TRAINING
	8 VISUALIZATION 1: BASIC RECONSTRUCTION
	9 VISUALIZATION 2: ERROR MAPS
	10 VISUALIZATION 3: NOISE ROBUSTNESS TEST
	import random

	11 VISUALIZATION 4: LATENT SPACE PROJECTION
	from matplotlib.lines import Line2D

