
Experiment-8 

 Autoencoders for Representation Learning 

  

 

Aim: 

To study and implement autoencoders for unsupervised representation learning by training both a basic 

and a denoising autoencoder on the Fashion-MNIST dataset (mapping noisy inputs to clean outputs), 

and to analyze unsupervised compression and reconstruction performance through reconstruction grids 

and a 2-D projection of the learned latent space. 

  

Theory: 

Introduction to Autoencoders 

Autoencoders are a type of neural network used for unsupervised learning of efficient data 

representations. Unlike supervised learning methods that require labelled data, autoencoders learn 

useful features by attempting to reconstruct their input. The main idea is to compress the input into a 

lower-dimensional representation and then reconstruct the original input from this compressed form 

using an encoder–decoder architecture. 

“High-dimensional data can be converted to low-dimensional codes by training a multilayer neural 

network with a small central layer to reconstruct high-dimensional input vectors." 

 - Hinton & Salakhutdinov, Science, 2006 

An autoencoder consists of two main parts: 

● Encoder: Compresses the input into a latent-space representation (bottleneck layer) 

● Decoder: Reconstructs the input from the latent representation 

 

The network is trained to minimise the difference between the input and its reconstruction, 

forcing it to learn the most important features of the data. 

 

 

 

 

 

  



Types of Autoencoders: 

Basic Autoencoder: 

A basic autoencoder learns to compress and reconstruct clean input data. The input image is passed 

through the encoder, compressed into a bottleneck (latent) representation, and then reconstructed by 

the decoder.  

The bottleneck layer forces the network to learn a compressed representation that captures the 

essential features of the input while discarding redundant information. 

Denoising Autoencoder: 

“A denoising autoencoder is trained to reconstruct a clean 'repaired' input from a corrupted version of 

it." 

 -  Vincent et al., ICML 2008 

A denoising autoencoder is trained to reconstruct a clean “repaired” input from a corrupted version of 

it. In this case, noise is deliberately added to the input image, and the corrupted image is then fed into 

the autoencoder. The decoder attempts to reconstruct the original clean image rather than the noisy 

input. 

 

Figure 1-  Denoising autoencoder 

(Source: Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.) 



 

A denoising autoencoder is trained to map a corrupted data point x’ back to the original data point x as 

shown in Figure 1. We illustrate training examples x as red crosses lying near a low-dimensional 

manifold illustrated with the bold black line. We illustrate the corruption process C (x’ | x) with a gray 

circle of equiprobable corruption. A gray arrow demonstrates how one training example is transformed 

into one sample from this corruption process. 

The training process for a denoising autoencoder can be written as: 

● Input: 𝑥′ = 𝑥 + 𝑛 ⋅ 𝑥 where n is random noise 

● Target:  𝑥 (clean image) 

● Loss: 𝐿 (𝑥,  𝑔(𝑓(𝑥′))) 

 

 

The reconstruction loss is computed by comparing the decoder’s output with the original clean 

image. This forces the network to learn features that are resilient to noise and capture the 

underlying structure of the data. 

  

 

 

 

 

Latent Space Representation: 

Latent space (bottleneck layer) is the compressed representation learned by the encoder. This 

compression enables autoencoders to learn hierarchical representations of data.   

For visualisation purposes, a 2-dimensional latent space is often used. When the latent dimension is 2, 

the encoded representations of input images can be directly plotted to observe how the autoencoder 

organises different patterns in the data.  

 Similar fashion items tend to cluster together in the learned latent space, indicating that the 

autoencoder has learned meaningful and discriminative representations. 

 



 

Figure 2- Reconstructed Image After Noise Removal 

(Source: Deep Learning. Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press.) 

 

The amount of vertical translation defines a coordinate along a one-dimensional manifold that traces a 

curved path through image space. The above plot as shown in Figure 2 shows a few points along this 

manifold. For visualization, we have projected the manifold into two-dimensional space using PCA. An n-

dimensional manifold has an n-dimensional tangent plane at every point. This tangent plane touches the 

manifold exactly at that point and is oriented parallel to the surface at that point. 

 

  

Merits of Autoencoders 

● Unsupervised Learning: No labelled data required for training 

● Dimensionality Reduction: Learns compact representations of high-dimensional data 

● Noise Reduction: Denoising autoencoders can remove noise from corrupted data 



● Feature Learning: Automatically discovers useful features without manual engineering 

● Data Compression: Can be used for efficient data storage and transmission 

Demerits of Autoencoders 

● Reconstruction Quality: May not perfectly reconstruct complex images 

● Training Complexity: Requires careful tuning of architecture and hyperparameters 

● Computational Cost: Deep autoencoders require significant training time 

● Task-Specific: Representations learned may not transfer well to other tasks 
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Code & Result: 

 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

/kaggle/input/fashionmnist/t10k-labels-idx1-ubyte 

/kaggle/input/fashionmnist/t10k-images-idx3-ubyte 
/kaggle/input/fashionmnist/fashion-mnist_test.csv 

/kaggle/input/fashionmnist/fashion-mnist_train.csv 
/kaggle/input/fashionmnist/train-labels-idx1-ubyte 

/kaggle/input/fashionmnist/train-images-idx3-ubyte 

1 IMPORT LIBRARIES 

# ============================================================================ 
# IMPORT LIBRARIES 
# ============================================================================ 
import torch 

import torch.nn as nn 

# This Python 3 environment comes with many helpful analytics libraries␣ 
𝗌installed 

# It is defined by the kaggle/python Docker image: https://github.com/kaggle/ 
𝗌docker-python 

# For example, here's several helpful packages to load 

 
import numpy as np # linear algebra 
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) 

 
# Input data files are available in the read-only "../input/" directory 

# For example, running this (by clicking run or pressing Shift+Enter) will list␣ 
𝗌all files under the input directory 

 
import os 

for dirname, _, filenames in os.walk('/kaggle/input'): 

for filename in filenames: 
print(os.path.join(dirname,  filename)) 

# You can write up to 20GB to the current directory (/kaggle/working/) that␣ 
𝗌gets preserved as output when you create a version using "Save & Run All" 

# You can also write temporary files to /kaggle/temp/, but they won't be saved␣ 
𝗌outside of the current session 
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2 ADD DATA 

[ ]: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

Files copied successfully 

3 SHOW DATA 

 

 
import numpy as np 

import matplotlib.pyplot as plt 
import numpy as np 

 
# Define class names for FashionMNIST 

classes = [ 

'T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot' 

] 

def display_one_from_each_class(dataset): 
found_classes = {} 

idx = 0 

# Loop until we find one of each (0-9) 

import os 
import shutil 

 

base = "/kaggle/working/FashionMNIST/raw" 
os.makedirs(base, exist_ok=True) 

src = "/kaggle/input/fashionmnist" 

files = [ 

"train-images-idx3-ubyte", 
"train-labels-idx1-ubyte", 
"t10k-images-idx3-ubyte", 

"t10k-labels-idx1-ubyte" 

] 

for f in files: 

shutil.copy(os.path.join(src, f), os.path.join(base, f)) 

print("Files copied successfully") 
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[ ]: 

while len(found_classes) < 10: 
img, label = dataset[idx] 

if label not in found_classes: 
found_classes[label] = img 

idx += 1 

# Plotting 

plt.figure(figsize=(15, 5)) 

for label, img in sorted(found_classes.items()): 
plt.subplot(2, 5, label + 1) 
# Convert tensor to numpy and remove channel dim for grayscale 

plt.imshow(img.squeeze(),  cmap='gray') 

plt.title(classes[label]) 

plt.axis('off') 

plt.tight_layout() 
plt.show() 

# Execute the function 

display_one_from_each_class(train_data) 

from torchvision import datasets, transforms 

from torch.utils.data import DataLoader 

transform = transforms.ToTensor() 

train_data = datasets.FashionMNIST( 
root="/kaggle/working", 
train=True, 

download=False, 
transform=transform 

) 
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4 AUTOENCODER MODEL 

[ ]: 

test_data = datasets.FashionMNIST( 
root="/kaggle/working", 

train=False, 

download=False, 
transform=transform 

) 

train_loader = DataLoader(train_data, batch_size=128, shuffle=True) 
test_loader = DataLoader(test_data, batch_size=128, shuffle=False) 

# ============================================================================ 
# Architecture: Deeper network with BatchNorm, Dropout, and 2D latent space 
# Progression: 784 -> 512 -> 256 -> 128 -> 64 -> 32 -> 16 -> 8 -> 4 -> 2 
# ============================================================================ 

class Autoencoder(nn.Module): 

def   init  (self): 

super(). init () 

# Deeper encoder: Compressing from 784 down to 2 

self.encoder = nn.Sequential( 

nn.Flatten(), 
nn.Linear(784, 512), 

nn.BatchNorm1d(512), 
nn.ReLU(), 

nn.Dropout(0.1), 

nn.Linear(512, 256), 
nn.BatchNorm1d(256), 
nn.ReLU(), 

nn.Linear(256, 128), 
nn.BatchNorm1d(128), 
nn.ReLU(), 

nn.Linear(128, 64), 
nn.BatchNorm1d(64), 

nn.ReLU(), 

nn.Linear(64, 32), 
nn.BatchNorm1d(32), 

nn.ReLU(), 

nn.Linear(32, 16), 
nn.BatchNorm1d(16), 
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nn.ReLU(), 

nn.Linear(16, 8), 
nn.BatchNorm1d(8), 

nn.ReLU(), 

nn.Linear(8, 4), 
nn.BatchNorm1d(4), 

nn.ReLU(), 

nn.Linear(4, 2) # Latent space (2D for visualization) 

) 

# Deeper decoder: Reconstructing from 2 back to 784 

self.decoder = nn.Sequential( 

nn.Linear(2, 4), 
nn.BatchNorm1d(4), 

nn.ReLU(), 

nn.Linear(4, 8), 
nn.BatchNorm1d(8), 

nn.ReLU(), 

nn.Linear(8, 16), 
nn.BatchNorm1d(16), 
nn.ReLU(), 

nn.Linear(16, 32), 
nn.BatchNorm1d(32), 
nn.ReLU(), 

nn.Linear(32, 64), 

nn.BatchNorm1d(64), 
nn.ReLU(), 

nn.Linear(64, 128), 
nn.BatchNorm1d(128), 

nn.ReLU(), 

nn.Linear(128, 256), 
nn.BatchNorm1d(256), 

nn.ReLU(), 

nn.Linear(256, 512), 
nn.BatchNorm1d(512), 
nn.ReLU(), 
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5 TRAINING SETUP 

[ ]: 

 

 

 

 

 

 

 

 

 

 
6 NOISE ADDITION FUNCTION 

[ ]: 

nn.Linear(512, 784), 

nn.Sigmoid() # Use Sigmoid for pixel values between [0, 1] 

) 

def forward(self, x): 

z = self.encoder(x) 
out = self.decoder(z) 
# Reshape output back to image dimensions if necessary for your loss␣ 

𝗌function 

# out = out.view(-1, 1, 28, 28) 

return out, z 

# ============================================================================ 
# NOISE ADDITION FUNCTION 
# Adds Gaussian noise to images for denoising task 
# Reduced noise factor (0.25 vs 0.4) for better reconstruction quality 
# ============================================================================ 

def add_noise(x, noise_factor=0.25): # Reduced from 0.4 to 0.25 

noisy = x + noise_factor * torch.randn_like(x) 

return  torch.clamp(noisy, 0., 1.) 

# ============================================================================ 
# SETUP TRAINING CONFIGURATION 
# Initialize model, loss functions, optimizer, and learning rate scheduler 
# ============================================================================ 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model = Autoencoder().to(device) 

# Use MSE + L1 loss for better detail preservation 

criterion_mse = nn.MSELoss() 

criterion_l1 = nn.L1Loss() 

# Improved optimizer with scheduler 

optimizer = torch.optim.AdamW(model.parameters(), lr=0.001, weight_decay=1e-5) 
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( 

optimizer, mode='min', factor=0.5, patience=5 

) 
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[ ]: 

7 TRAINING 

# ============================================================================ 
# TRAINING LOOP 
# Train for 100 epochs with combined MSE+L1 loss, gradient clipping, and 
# automatic best model checkpointing 
# ============================================================================ 

epochs = 100 #  Increased  epochs 

best_loss = float('inf') 

print("Starting training...") 

for epoch in range(epochs): 
model.train()  

total_loss = 0 

for images, _ in train_loader: 
images = images.to(device) 
noisy = add_noise(images) 

outputs, _ = model(noisy) 

# Combined loss for better quality 

loss_mse = criterion_mse(outputs, images.view(images.size(0), -1)) 
loss_l1 = criterion_l1(outputs, images.view(images.size(0), -1)) 
loss = 0.7 * loss_mse + 0.3 * loss_l1 

optimizer.zero_grad() 
loss.backward() 

# Gradient clipping for stability 

torch.nn.utils.clip_grad_norm_(model.parameters(),  max_norm=1.0)o 

optimizer.step()  
total_loss += loss.item() 

avg_loss = total_loss / len(train_loader) 
scheduler.step(avg_loss) 

# Save best model 

if avg_loss < best_loss: 

best_loss = avg_loss 

torch.save(model.state_dict(), 'best_autoencoder.pth') 

if (epoch + 1) % 5 == 0: 

print(f"Epoch [{epoch+1}/{epochs}] Loss: {avg_loss:.4f}") 

print(f"\nTraining completed! Best Loss: {best_loss:.4f}") 
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Starting training… 

Epoch [5/100] Loss: 0.0542 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[ ]: 

Epoch [100/100] Loss: 0.0445 

Training completed! Best Loss: 0.0445 

8 VISUALIZATION 1: BASIC RECONSTRUCTION 

# ============================================================================ 
# VISUALIZATION 1: BASIC RECONSTRUCTION 
# Display original, noisy, and reconstructed images side-by-side 
# Shows 8 sample images from test set 
# ============================================================================ 

model.eval() 

images, _ = next(iter(test_loader)) 
images = images.to(device) 

noisy = add_noise(images) 

with  torch.no_grad(): 
reconstructed, _ = model(noisy) 

n = 8 

plt.figure(figsize=(12, 5)) 

for i in range(n): 
# Original 

plt.subplot(3, n, i+1) 
plt.imshow(images[i].cpu().squeeze(), cmap='gray') 
plt.axis('off') 

if i == 0: 

Epoch [10/100] Loss: 0.0520 

Epoch [15/100] Loss: 0.0510 
Epoch [20/100] Loss: 0.0487 
Epoch [25/100] Loss: 0.0477 
Epoch [30/100] Loss: 0.0496 

Epoch [35/100] Loss: 0.0470 
Epoch [40/100] Loss: 0.0482 
Epoch [45/100] Loss: 0.0467 
Epoch [50/100] Loss: 0.0461 

Epoch [55/100] Loss: 0.0458 
Epoch [60/100] Loss: 0.0457 
Epoch [65/100] Loss: 0.0457 
Epoch [70/100] Loss: 0.0448 

Epoch [75/100] Loss: 0.0450 
Epoch [80/100] Loss: 0.0448 
Epoch [85/100] Loss: 0.0447 
Epoch [90/100] Loss: 0.0445 

Epoch [95/100] Loss: 0.0446 
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[ ]: 

Reconstruction visualization saved as 'improved.png' 

9 VISUALIZATION 2: ERROR MAPS 

plt.title('Original',   fontsize=10) 

# Noisy 

plt.subplot(3, n, i+1+n) 

plt.imshow(noisy[i].cpu().squeeze(), cmap='gray') 
plt.axis('off') 
if i == 0: 

plt.title('Noisy',  fontsize=10) 

# Reconstructed 

plt.subplot(3, n, i+1+2*n) 
plt.imshow(reconstructed[i].view(28,28).cpu(), cmap='gray') 
plt.axis('off') 
if i == 0: 

plt.title('Reconstructed', fontsize=10) 

plt.tight_layout() 

plt.savefig('improved_reconstruction.png', dpi=150, bbox_inches='tight') 
plt.show() 

print("\nReconstruction visualization saved as 'improved.png'") 

# ============================================================================ 
# VISUALIZATION 2: ERROR MAPS 
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# ============================================================================ 

model.eval() 

images, _ = next(iter(test_loader)) 
images = images.to(device) 

noisy = add_noise(images) 

with  torch.no_grad(): 
reconstructed, _ = model(noisy) 

reconstructed = reconstructed.view(-1, 1, 28, 28) 
error = torch.abs(images - reconstructed) 

plt.figure(figsize=(10, 4)) 

for i in range(6): 
# Original 

plt.subplot(2, 6, i+1) 
plt.imshow(images[i].cpu().squeeze(), cmap='gray') 

plt.axis('off') 
if i == 0: 

plt.ylabel('Original', fontsize=10) 

# Error map 

plt.subplot(2, 6, i+7) 
plt.imshow(error[i].cpu().squeeze(), cmap='hot') 

plt.axis('off') 
if i == 0: 

plt.ylabel('Error Map', fontsize=10) 

plt.suptitle("Original Images vs Reconstruction Error Maps (Lower is Better)",␣ 

𝗌fontsize=12) 

plt.tight_layout() 

plt.savefig('error_maps.png', dpi=150, bbox_inches='tight') 
plt.show() 
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[ ]: 

10 VISUALIZATION 3: NOISE ROBUSTNESS TEST 

# ============================================================================ 
# VISUALIZATION 3: NOISE ROBUSTNESS TEST 
# Tests model performance at different noise levels (0.1 to 0.6) 
# Shows how well the model handles varying amounts of noise 
# ============================================================================ 
import random 

img_idx = random.randint(0, images.size(0) - 1) 
noise_levels = [0.1, 0.25, 0.4, 0.6] 

plt.figure(figsize=(12, 8)) 

for i, nf in enumerate(noise_levels): 

noisy_test = add_noise(images, nf) 
with torch.no_grad(): 

recon, _ = model(noisy_test) 

# Original 

plt.subplot(len(noise_levels), 3, i*3 + 1) 
plt.imshow(images[img_idx].cpu().squeeze(), cmap='gray') 

plt.axis('off') 
if i == 0: 

plt.title('Original', fontsize=10) 
plt.ylabel(f'Noise={nf}', fontsize=9) 

# Noisy 

plt.subplot(len(noise_levels), 3, i*3 + 2) 

plt.imshow(noisy_test[img_idx].cpu().squeeze(), cmap='gray') 
plt.axis('off') 
if i == 0: 

plt.title('Noisy Input', fontsize=10) 

# Reconstructed 

plt.subplot(len(noise_levels), 3, i*3 + 3) 
plt.imshow(recon[img_idx].view(28,28).cpu(), cmap='gray') 

plt.axis('off') 
if i == 0: 

plt.title('Reconstructed', fontsize=10) 

plt.suptitle('Denoising Performance at Different Noise Levels', fontsize=12) 
plt.tight_layout() 

plt.savefig('noise_comparison.png', dpi=150, bbox_inches='tight') 
plt.show() 
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11 VISUALIZATION 4: LATENT SPACE PROJECTION 

[ ]: # ============================================================================ 
# VISUALIZATION 4: LATENT SPACE PROJECTION 
# 2D visualization of the NATIVE 2D latent space showing class clusters 
# Each color represents a different FashionMNIST class 
# ============================================================================ 

model.eval() 
latents = [] 
labels = [] 

with torch.no_grad(): 

for images, lbls in test_loader: 

images = images.to(device) 
#  Your  model  returns:  (reconstruction,  latent_z) 
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_, z = model(images) 
latents.append(z.cpu()) 

labels.append(lbls) 

# Concatenate all batches into single arrays 

latents = torch.cat(latents).numpy() 

labels = torch.cat(labels).numpy() 

from matplotlib.lines import Line2D 

class_names = [ 

"T-shirt/top", "Trouser", "Pullover", "Dress", "Coat", 
"Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot" 

] 

plt.figure(figsize=(12, 10)) 
# Since latents is already (N, 2), we use index 0 and 1 directly 

scatter = plt.scatter( 
latents[:, 0], 

latents[:, 1], 
c=labels, 
cmap='tab10', 
s=5, # Increased size slightly for better visibility 
alpha=0.7, # Adjusted alpha for overlap 
edgecolors='none' 

) 

plt.xlabel("Latent Coordinate X", fontsize=11) 
plt.ylabel("Latent Coordinate Y", fontsize=11) 

plt.title("2D Latent Space Projection (Native Bottleneck)", fontsize=14) 

# Create custom legend 

legend_elements = [ 

Line2D([0], [0], marker='o', color='w', 

label=f"{i}: {class_names[i]}", 
markerfacecolor=scatter.cmap(scatter.norm(i)), 
markersize=10) 

for i in range(10) 

] 

plt.legend(handles=legend_elements, title="Fashion Categories", 
loc="upper right", fontsize=9, ncol=2, frameon=True) 

plt.grid(True, linestyle='--', alpha=0.5) 
plt.tight_layout() 

plt.savefig('latent_space_2d.png', dpi=150, bbox_inches='tight') 
plt.show() 
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[ ]: # ============================================================================ 
# QUANTITATIVE EVALUATION 
# ============================================================================ 

model.eval() 

total_mse = total_ssim = total_psnr = total_samples = 0 

def calculate_ssim(img1, img2): 

C1, C2 = 0.01 ** 2, 0.03 ** 2 

mu1, mu2 = img1.mean(), img2.mean() 
sigma1_sq = ((img1 - mu1) ** 2).mean() 
sigma2_sq = ((img2 - mu2) ** 2).mean() 
sigma12 = ((img1 - mu1) * (img2 - mu2)).mean() 
return (((2 * mu1 * mu2 + C1) * (2 * sigma12 + C2)) / 

((mu1 ** 2 + mu2 ** 2 + C1) * (sigma1_sq + sigma2_sq + C2))).item() 

with torch.no_grad(): 

for images, _ in test_loader: 
images = images.to(device) 
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MSE: 0.026800 | PSNR: 16.33 dB | SSIM: 0.8210 

noisy = add_noise(images) 
outputs, _ = model(noisy) 

outputs = outputs.view_as(images) # Reshape to match images 

mse = ((outputs - images) ** 2).mean(dim=[1, 2, 3]) 
total_mse += mse.sum().item() 
total_psnr += sum(20 * torch.log10(1.0 / torch.sqrt(m)) for m in mse). 

𝗌item() 

total_ssim += sum(calculate_ssim(images[i].squeeze(), outputs[i]. 

𝗌squeeze()) 

for i in range(images.size(0))) 
total_samples += images.size(0) 

print(f"\nMSE:  {total_mse/total_samples:.6f}  |  PSNR:  {total_psnr/total_samples:. 

𝗌2f} dB | SSIM: {total_ssim/total_samples:.4f}") 
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