What do you infer?
/
α . a = 0 ⇒ α = 0, α ∈ F
α . 0 = 0, α ≠ 0, α ∈ F
Result :
b ∈ L(S1)
⇒ S is LINEARLY DEPENDENT
b ∉ L(S1)
⇒ S is LINEARLY INDEPENDENT
S is LINEARLY INDEPENDENT
b ≡ (1, 2) ∉ L({(1, 1)})
α . (1, 1) + β . (1, 2) = (0, 0)
⇒ (α + β , α + 2β) = (0, 0)
⇒ α + β = 0 , α + 2β = 0
⇒ α = 0 , β = 0
S is LINEARLY DEPENDENT
b ≡ (3, 3) ∈ L({(1, 1)}) ⇒
(3, 3) = 3(1, 1)
3(1, 1) + (-1) (3, 3) = (0, 0)